Interpolation of Convex Scattered Data in R^{3} Based upon an Edge Convex Minimum Norm Network
 Lars-Erik Andersson and Tommy Elfving
 Department of Mathematics, Linköping University, S-581 83 Linköping, Sweden
 AND
 Georgy Iliev and Krassimira Vlachkova
 Institute of Mathematics, Bulgarian Academy of Science, P.O. Box 373, Sofia 1090, Bulgaria

Communicated by Frank Deutsch
Received August 24, 1992; accepted in revised form February 11, 1994

Abstract

In this paper a characterization of the optimal (using the minimum norm criterion) interpolant, convex along the edges of a triangulation, using data at the vertices is obtained. We thereby generalize results obtained by Nielson for the unconstrained case. 1995 Academic Press. Inc

1. Introduction

In a paper by Nielson [18] a method for interpolation of scattered data in R^{3} is presented. More precisely, given data $\left(x_{i}, y_{i}, z_{i}\right) \in R^{3}, i=1, \ldots, n$, a bivariate function S with continuous first order partial derivatives and with the property $S\left(x_{i}, y_{i}\right)=z_{i}, i=1, \ldots, n$, is constructed. The method of Nielson consists of three separate steps:
(i) Triangulation. The points $V_{i}:=\left(x_{i}, y_{i}\right) \in R^{2}$ are used as vertices of a triangulation of a domain in R^{2}. The papers of Lawson [15] and Akima [1] contain a good discussion of many aspects of triangulating the convex hull of $V_{i}, i=1, \ldots, n$.
(ii) Construction of the minimum norm network. We pay special attention to this part of Nielson's method in our Section 2. We give a new
proof of his result by using a different approach since this is necessary for the purposes of this paper.
(iii) Blending. S is extended to the entire domain by means of a blending method. A detailed description of this step can be found in Nielson $[18,19]$.

The paper by Nielson [18] as well as an extension to a case with splines under tension by Nielson and Franke [20] generalizes well known classical results for so-called best interpolation of data in R^{2} (see, e.g., C. De Boor and R. Lynch [5], C. De Boor [6]).

Recently many other results generalizing different aspects of best interpolation of data in R^{2} have appeared. We refer to these as shape preserving best interpolation. The term shape reflects properties like convexity, monotonicity, and/or positivity of the interpolant, see, e.g., $[14,16,2,3]$ and the recent survey [13] by Greiner.

The area of surface fitting combined with shape-preserving interpolation has also attracted the attention of several researches. We mention, e.g., the papers by Beatson and Ziegler [4], Carlson and Fritsch [7], Dodd, McAllister, and Roulier [12, 21], Schmidt [22], and Costantini and Fontanella [8]. Utreras and Varas in [24] combined the notion of best interpolation with monotonicity of the interpolant.

The present paper addresses the problem of characterizing the minimum norm interpolant such that it is convex along the grid lines of a triangular net. We will refer to such a function as an edge convex network (a more detailed definition is given in Section 3). The formulation and the proof of the main result, Theorem 3.1, are given in Section 3. Here we apply recent results on convex optimization in Hilbert spaces [17, 9, 10]. We also pay attention to the problem of characterizing convex data over a triangulation.

By Theorems 3.1 and 3.2 the minimum norm solution is obtained as the solution of a nonlinear system of equations. In Section 3 we also formulate a Newton type algorithm for solving this system and present some numerical examples.

Remark 1.1. The important problem of extending the edge convex network into a C^{1}-function which is convex everywhere is very hard for general convex data. In fact it seems possible to construct examples such that the edge convex network cannot be extended. See also [8, p. 488].

2. The Unconstrained Minimization Problem

Let $n \geqslant 3$ be a given integer and $V_{i}=\left(x_{i}, y_{i}\right) \in R^{2}, i=1, \ldots, n$, given data points. A triangulation T will consist of a collection of non-overlapping,
non-degenerate closed triangles $T_{i j k}$ with vertices at V_{i}, V_{j}, and V_{k}, such that no vertex of one triangle lies on the edge of another triangle.

We denote by $I_{\text {, }}$ the set of triples of indices that determine the triangulation T. Let

$$
D=\bigcup_{i j k \in U_{1}} T_{i j k}
$$

and let ∂D be the boundary of D. For $i j k \in I_{i}$ denote by $e_{i j}$ the edge going from V_{i} to V_{j}. Introduce the edge sets,

$$
N_{e}:=\left\{i j \mid i, j \in\{\alpha, \beta, \gamma\}, \alpha \beta \gamma \in I_{r}\right\}, \quad E=\bigcup_{i j \in N_{e}} e_{i j}
$$

The oriented angle between $e_{i j}$ and $e_{i k}$ will be denoted by $L\left(e_{i j}, e_{i k}\right)$.
Let F be a function of two variables defined on E. This function may be described by the following family of univariate functions,

$$
\begin{equation*}
f_{i j}(t):=F\left(\left(1-t /\left\|e_{i j}\right\|\right) V_{i}+t V_{j} /\left\|e_{i j}\right\|\right)=F\left(x_{i j}(t), y_{i j}(t)\right), \tag{2.1}
\end{equation*}
$$

with

$$
\begin{gathered}
x_{i j}(t)=\left(1-t /\left\|e_{i j}\right\|\right) x_{i}+t x_{j} /\left\|e_{i j}\right\|, \quad y_{i j}(t)=\left(1-t /\left\|e_{i j}\right\|\right) y_{i}+t y_{j} /\left\|e_{i j}\right\|, \\
0 \leqslant t \leqslant\left\|e_{i j}\right\|, \quad\left\|e_{i j}\right\|:=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}, \quad i j \in N_{c} .
\end{gathered}
$$

The family of functions

$$
F=\left\{f_{i j}\right\}_{i j \in N_{e}}
$$

will be called a curve network. We now introduce some function classes on the set E of edges:

$$
\begin{aligned}
L^{2}(E) & =\left\{F=\left\{f_{i j}\right\}_{i j \in N_{e}}: f_{i j} \in L^{2}\left(0,\left\|e_{i j}\right\|\right)\right\} \\
W^{2}(E) & =\left\{F=\left\{f_{i j}\right\}_{i j \in N_{r}}: f_{i j}, f_{i j}^{\prime}, f_{i j}^{\prime \prime} \in L^{2}\left(0,\left\|e_{i j}\right\|\right)\right\}
\end{aligned}
$$

and

$$
\begin{gathered}
C(E)=\left\{F=\left\{f_{i j}\right\}_{i j \in N_{e}}: F \in W^{2}(E), F=\left.H\right|_{E}, H \in C^{1}\left(R^{2}\right),\right. \\
\left.H\left(x_{i}, y_{i}\right)=z_{i}, i=1, \ldots n\right\} .
\end{gathered}
$$

The smoothness assumption on $C(E)$, that F is the restriction to E of some function in $C^{1}\left(R^{2}\right)$, should be understood in the following equivalent way. If we consider the set of functions $\left\{f_{i j}\right\}_{i j \in N_{e}}$ as curves in R^{3}, then in every point V, they have a common tangent plane.

For $F \in W^{2}(E)$ let us consider the functional

$$
\sigma(F)=\sigma\left(\left\{f_{i j}\right\}_{i j \in N_{c}}\right)=\sum_{i j \in N_{e}} \int_{0}^{\| e_{i j \|}}\left[f_{i j}^{\prime \prime}\right]^{2} d t
$$

For a given triangulation and given observation points $\left\{z_{i}\right\}$ we now consider, following Nielson [18], the extremal problem:

$$
\begin{equation*}
\text { Find } F \in C(E) \text { such that } \sigma(F)=\inf _{F \in C_{E}} \sigma(F) \text {. } \tag{P}
\end{equation*}
$$

Theorem 2.1. Problem (\mathbf{P}) has a unique solution $F \in C(E)$.
Proof. Let $\left\{F_{n}\right\}_{1}^{\infty} \subset C(E)$ be a minimizing sequence. By selecting a subsequence we may assume that $f_{i j, n}^{\prime \prime} \rightharpoonup f_{i j}^{\prime \prime}$ weakly in $L^{2}\left(0,\left\|e_{i j}\right\|\right)$ as $n \rightarrow \infty$. Here $f_{i j, n} \in W^{2}\left(0,\left\|e_{i j}\right\|\right)$ and $f_{i j, n}(0)=z_{i}, f_{i j, n}\left(\left\|e_{i j}\right\|\right)=z_{j}$. Further for $f_{i j, n}$, $f_{i j, n}^{\prime}$ we have convergence for all t, in particular for $t=0$ and $t=\left\|e_{i j}\right\|$, i.e., at the points $\left(x_{k}, y_{k}\right)$. Therefore the limit functions $f_{i j}$ satisfy the same restrictions on the tangent curves as $f_{i j, n}$, i.e., $F=\left\{f_{i j}\right\}_{i j \in N_{i}} \in C(E)$. Since $\sigma(F)$ is a quadratic functional it is also clear that F is a minimizer.

Next, if F_{0} and $F_{1} \in C(E)$ are minimizers, then we may conclude, using that $C(E)$ is convex and that the functional $\int_{E} g^{2} d t$ is strictly convex in $L^{2}(E)$, that $f_{i j, 0}^{\prime \prime}(t)=f_{i j, 1}^{\prime \prime}(t)$ for all $t \in\left[0,\left\|e_{i j}\right\|\right]$. Since $f_{i j, 0}$ and $f_{i j, 1}$ are equal at the end points, we conclude that $f_{i j, 0}(t)=f_{i j, 1}(t)$ for all t, and we have proved uniqueness.

The solution of problem (\mathbf{P}) will be denoted by F and refered to as the minimum norm network.

In [18] a complete characterization of the solution of (\mathbf{P}) is given, i.e., a method is described which enables one to find F for any data (x_{i}, y_{i}, z_{i}), $i=1, \ldots, n$, and any (allowable) triangulation T of $V_{i}=\left(x_{i}, y_{i}\right), i=1, \ldots, n$. This method reduces the problem to solving a system of linear equations for the unknowns $\partial F / \partial x\left(V_{i}\right)$ and $\partial F / \partial y\left(V_{i}\right), i=1, \ldots, n$. Similarly to the problem of best interpolation of data in R^{2}, the solution is a smooth interpolating curve network $F=\left\{f_{i j}\right\}_{i j \in N_{e}} \in C(E)$ for which the functions $\left\{f_{i j}\right\}$ are cubic polynomials.

For the purposes of this paper we shall apply a different view. The idea is to construct a system of simple curve networks, partially linear on the edges, and to represent the second derivative of the solution of (\mathbf{P}) as a linear combination of the elements of this system.

The notations and definitions in the following are illustrated in Fig. 2.1. Let us denote
$N_{i}:=\left\{i j \mid e_{i j}\right.$ is an edge in E with starting point $\left.V_{i}\right\}, \quad i=1, \ldots, n$.
Let m_{i} be the number of elements in N_{i}. Clearly $m_{i} \geqslant 2$ for $i=1, \ldots, n$ and $m_{i}=2$ only occurs for certain vertices lying on the boundary ∂D.

Figure 2.1.
In the subsequent construction of a basic network only those sets for which $m_{i} \geqslant 3$ will enter. In order to avoid repeating the condition $m_{i}>2$ we adopt the convention that the list of indices $1,2, \ldots, m_{i}-2$ will simply be empty if $m_{i}=2$. Now for such a set N_{i} we define an order of its elements. The first element i_{1} is chosen arbitrary. The ($k+1$)st element is defined such that $i i_{k+1} \in N_{i}, i i_{k+1} \neq i i_{r}, r=1, \ldots, k$ and $\angle\left(e_{i i_{k}}, e_{i i_{k+1}}\right)$ is minimal. In this way N_{i} becomes an ordered set

$$
\begin{equation*}
N_{i}=\left\{i i_{1}, \ldots, i i_{m_{i}}\right\} . \tag{2.3}
\end{equation*}
$$

For the ordered sets N_{i}, defined by (2.2) and (2.3) we define linear networks on E called basic networks. Although this may be done in several ways we shall pursue only one possibility.

For a fixed i and for each $s=1, \ldots, m_{i}-2$ consider the following linear system in the unknowns $\lambda_{1, i}^{(s)}, \lambda_{2, i}^{(s)}, \lambda_{3, i}^{(s)}$,

$$
\begin{array}{r}
\lambda_{1, i}^{(s)} \frac{x_{i_{s}}-x_{i}}{\| e_{i i, l},}+\lambda_{2, i}^{(s)} \frac{x_{i_{s}+1}-x_{i}}{\left\|e_{i i_{+}+1}\right\|}+\lambda_{3, i}^{(s)} \frac{x_{i_{++2}}-x_{i}}{\left\|e_{i i_{+}+2}\right\|}=0 \\
\lambda_{1, i}^{(s)} \frac{y_{i_{s}}-y_{i}}{\left\|e_{i i_{s} \|}\right\|}+\lambda_{2, i}^{(s)} \frac{y_{i_{+1}}-y_{i}}{\left\|e_{i i_{s-1}}\right\|}+\lambda_{3, i}^{(s)} \frac{y_{i_{s}+2}-y_{i}}{\left\|e_{i i_{+}+2}\right\|}=0 \tag{2.4}\\
\lambda_{1, i}^{(s)}+\lambda_{2, i}^{(s)}+\lambda_{3, i}^{(s)}=1 .
\end{array}
$$

The determinant of (2.4) is equal to 0 if and only if $\hat{e}_{i i_{s}}, \hat{e}_{i i_{s+1}}$, and $\hat{e}_{i i_{s+2}}$ (where \hat{e} denotes a unit vector) are collinear which is impossible since $\left\{e_{i i_{q}}\right\}, q=s, s+1, s+2$ are three different edges in E with a common vertex. Hence (2.4) always has a unique solution.

If we assume that two of the numbers, e.g., $\lambda_{1, i}^{(s)}$ and $\lambda_{2, i}^{(s)}$ equal zero, then it follows $V_{i_{5}+2} \equiv V_{i_{5}}$. Therefore at least two of the numbers $\lambda_{1, i}^{(s)}, \lambda_{2, i}^{(s)}, \lambda_{3, i}^{(s)}$ are nonzero. It is easy to see that we can choose i_{1} so that

$$
\begin{equation*}
\lambda_{1, i}^{(s)}>0, \quad s=1, \ldots, m_{i}-2 \tag{2.5}
\end{equation*}
$$

Moreover, if $V_{i} \notin \partial D$ then any choice of the initial $i i_{1}$ implies that $\lambda_{1, i}^{(s)} \neq 0$, $s=1,2, \ldots, m_{i}-2$.

In this way for every $N_{i}=\left(i i_{1}, \ldots, i i_{m_{i}}\right)$ we find $m_{i}-2$ triples of numbers $\lambda_{r, i}^{(s)}$. For each of these triples we construct functions $\left\{B_{i s}\right\}, s=1, \ldots, m_{i}-2$ on E such that each $B_{i, s}$ has support only on three edges $e_{i, 4}, q=i_{s}$, i_{s+1}, i_{s+2} where $i q \in N_{i}$. We take

$$
B_{i s}:= \begin{cases}\lambda_{r_{. i}(s)}^{\left(1-t / /\left\|e_{i q}\right\|\right)} & \text { on } e_{i q}, q=i_{s}, i_{s+1}, i_{s+2}, 0 \leqslant t \leqslant\left\|e_{i q}\right\| \tag{2.6}\\ 0 & \text { otherwise. }\end{cases}
$$

Here $r=r(q)=r\left(i_{s+j}\right)=j+1, j=0,1,2$.
Using the particular ordering $\left\{i i_{1}, \ldots, i i_{m_{i}}\right\}$ chosen for the sets N_{i} we have thus obtained a network $\left\{B_{i s}\right\}, 1 \leqslant i \leqslant n, 1 \leqslant s \leqslant m_{i}-2$ of functions on E. For later use let us also define functions $B_{i s}$ for $s=m_{i}-1$ and m_{i} by solving (2.4) with $m_{i}+1$ and $m_{i}+2$ replaced by 1 and 2 , respectively, so that, e.g., $e_{i i_{m_{i}}+1}:=e_{i i_{1}}$.

Let $F, G \in C(E)$. For curve networks we define an inner product as

$$
\left\langle F^{\prime \prime}, G^{\prime \prime}\right\rangle=\sum_{i j \in N_{i}} \int_{0}^{\left\|c_{i j}\right\|} f_{i j}^{\prime \prime} g_{i j}^{\prime \prime} d t
$$

so that $\sigma(F)=\left\langle F^{\prime \prime}, G^{\prime \prime}\right\rangle$.
Consider the set of functions $\left\{f_{i j}\right\}_{i j \in N_{c}}$ as curves in R^{3}, cf. (2.1),

$$
\left(x_{i j}(t), y_{i j}(t), f_{i j}(t)\right)
$$

Then the vector $\mathrm{t}_{i j} \in R^{3}$,

$$
\mathbf{t}_{i j}:=\left(\frac{x_{j}-x_{i}}{\left\|e_{i j}\right\|}, \frac{y_{j}-y_{i}}{\left\|e_{i j}\right\|}, f_{i j}^{\prime}(0)\right)
$$

is a tangent vector at the point V_{i}. Note again that the definition of $C(E)$ requires that the vectors $\mathbf{t}_{i i_{1}}, \mathbf{t}_{i i_{2}}, \ldots, \mathbf{t}_{\mathrm{i}_{i_{m_{i}}}}$ are coplanar.

LEMMA 2.1. $\mathbf{t}_{i i_{i}}, \mathbf{t}_{i i_{+1}}, \mathbf{t}_{i i_{i+2}}$ are coplanar if and only if

$$
\begin{equation*}
\lambda_{1, i}^{(s)} f_{i_{s}}^{\prime}(0)+\lambda_{2 . i}^{(s)} f_{i_{s+1}}^{\prime}(0)+\hat{\lambda}_{3, i}^{(s)} f_{i_{i}+2}^{\prime}(0)=0 \tag{2.7}
\end{equation*}
$$

where $\lambda_{1, i}^{(s)}, \lambda_{2, i}^{(s)}, \lambda_{3, i}^{(s)}$ are defined by (2.4).
Proof. Assume first that (2.7) holds. From (2.4) and (2.5) it follows that

$$
\lambda_{1, i}^{(s)} \mathbf{t}_{i i_{s}}+\lambda_{2, i}^{(s)} \mathbf{t}_{i_{s+1}}+\lambda_{3, i}^{(s)} \mathbf{t}_{i_{s+2}}=0
$$

and the numbers $\lambda_{1, i}^{(s)}, \lambda_{2, i}^{(s)}, \lambda_{3, i}^{(s)}$ are not simulatenously equal to zero. Consequently the three vectors are linearly dependent, i.e., they are coplanar.

Next let $\mathbf{t}_{i i_{s}}, \mathbf{t}_{i_{i s+1}}, \mathbf{t}_{i i_{5}+2}$ be coplanar. Then there exist numbers $\mu_{i, 1}^{(s)}$, $\mu_{2, i}^{(s)}, \mu_{3_{i}}^{(s)}$ that are not simultaneously zero and such that

$$
\mu_{1, i}^{(s)} \mathbf{t}_{i i_{s}}+\mu_{2, i}^{(s)} \mathbf{t}_{i i_{s+1}}+\mu_{3, i}^{(s)} \mathbf{t}_{i i_{s+2}}=0
$$

Then we have

$$
\begin{align*}
& \mu_{1, i}^{(s)} \frac{x_{i_{s}}-x_{i}}{\left\|e_{i i_{i}}\right\|}+\mu_{2, i}^{(s)} \frac{x_{i_{s+1}}-x_{i}}{\left\|e_{i i_{l}+1}\right\|}+\mu_{3, i}^{(s)} \frac{x_{i_{s+2}}-x_{i}}{\left\|e_{i i_{s+2}}\right\|}=0 \\
& \mu_{1, i}^{(s)} \frac{y_{i_{s}}-y_{i}}{\left\|e_{i i_{s}}\right\|}+\mu_{2, i}^{(s)} \frac{y_{i_{s+1}}-y_{i}}{\left\|e_{i i_{++1}}\right\|}+\mu_{3, i}^{(s)} \frac{y_{i_{s+2}}-y_{i}}{\left\|e_{i i_{++2}}\right\|}=0 \tag{2.8}\\
& \mu_{1, j}^{(s)} f_{i i_{i},}^{\prime}(0)+\mu_{2, i}^{(s)} f_{i i_{+}+1}^{\prime}(0)+\mu_{3, i}^{(s)} f_{i i_{++2}}^{\prime}(0)=0 .
\end{align*}
$$

From the first two equations of (2.8) and from (2.4) it follows that there is a constant $C \neq 0$ such that

$$
\mu_{1, i}^{(s)}=C \lambda_{1, i}^{(s)}, \quad \mu_{2, i}^{(s)}=C \lambda_{2, i}^{(s)}, \quad \mu_{3, i}^{(s)}=C \lambda_{3, i}^{(s)}
$$

Then from the last equation of (2.8) it follows

$$
C\left(\lambda_{1, i}^{(s)} f_{i i_{s}}^{\prime}(0)+\lambda_{2, i}^{(s)} f_{i i_{s+1}}^{\prime}(0)+\lambda_{3, i}^{(s)} f_{i i_{s-2}}^{\prime}(0)\right)=0 .
$$

Since $C \neq 0$, then $\lambda_{i, i}^{(s)} f_{i_{s}}^{\prime}(0)+\lambda_{2, i}^{(s)} f_{i_{s+1}}^{\prime}(0)+\lambda_{3_{1}, i}^{(s)} f_{i_{5+2}}^{\prime}(0)=0$.
Next we present a Peano-type lemma.
Lemma 2.2. $F \in C(E)$ if and only if for every $i, 1 \leqslant i \leqslant n$ it holds

$$
\begin{equation*}
\left\langle F^{\prime \prime}, B_{i s}\right\rangle=d_{i s}, \tag{2.9}
\end{equation*}
$$

where

$$
\begin{align*}
d_{i s}= & \frac{\lambda_{1, i}^{(s)}}{\left\|e_{i i_{s}}\right\|}\left(z_{i_{+}}-z_{i}\right)+\frac{\lambda_{2, i}^{(s)}}{\left\|e_{i_{s}+1}\right\|}\left(z_{i_{+}+1}-z_{i}\right)+\frac{\dot{i}_{3_{i}, i}^{(s)}}{\left\|e_{i i_{+}+2}\right\|}\left(z_{i_{s+2}}-z_{i}\right), \\
& s=1, \ldots, m_{i}-2 . \tag{2.10}
\end{align*}
$$

Proof. From the definition of $B_{i s}, s=1, \ldots, m_{i}-2$, it follows

$$
\begin{aligned}
\left\langle F^{\prime \prime}, B_{i s}\right\rangle= & \int_{0}^{\| e_{i_{s}}!} f_{i_{s}}^{\prime \prime}(t) \lambda_{i, i}^{(s)}\left(1-t /\left\|e_{i i_{s}}\right\|\right) d t \\
& +\int_{0}^{\left\|e_{i_{s}+1}\right\|} f_{i i_{+}+1}^{\prime \prime}(t) \lambda_{2, i}^{(s)}\left(1-t /\left\|e_{i i_{s+1}}\right\|\right) d t \\
& +\int_{0}^{\left\|e_{i_{s}+2}\right\|} f_{i i_{s}+2}^{\prime \prime}(t) \lambda_{3, i}^{(s)}\left(1-t /\left\|e_{i_{i_{s}}}\right\|\right) d t .
\end{aligned}
$$

After integration by parts we have

$$
\begin{aligned}
\left\langle F^{\prime \prime}, B_{i s}\right\rangle= & -\lambda_{1, i}^{(s)} f_{i i_{s}}^{\prime}(0)-\lambda_{2_{, i}}^{(s)} f_{i i_{s}+1}^{\prime}(0)-\lambda_{3_{i}}^{(s)} f_{i i_{s+2}}^{\prime}(0) \\
& +\frac{\lambda_{1, i}^{(s)}}{\left\|e_{i i_{s}}\right\|}\left(z_{i_{s}}-z_{i}\right)+\frac{\lambda_{2, i}^{(s)}}{\left\|e_{i i_{s+1}}\right\|}\left(z_{i_{s+1}}-z_{i}\right)+\frac{\lambda_{3, i}^{(s)}}{\left\|e_{i i_{s}+2}\right\|}\left(z_{i_{++2}}-z_{i}\right) .
\end{aligned}
$$

Now, to establish sufficiency, let $F \in C(E)$ and therefore $\left\{f_{i j}\right\}_{i j \in N_{c}}$ have a common tangent plane in every point $V_{i}, i=1, \ldots, n$. That means for every such i the vectors $\mathbf{t}_{i i_{i}}, \mathbf{t}_{i i_{++1}}, \mathbf{t}_{i_{i}+2}, s=1, \ldots, m_{i}-2$ lie in the tangent plane. Then according to Lemma 2.1

$$
\lambda_{1, i}^{(s)} f_{i i_{s}}^{\prime}(0)+\lambda_{2, i}^{(s)} f_{i i_{s+1}}^{\prime}(0)+\lambda_{3, i}^{(s)} f_{i i_{s+2}}^{\prime}(0)=0
$$

and so from (2.10) we obtain (2.9).
For the necessity assume that (2.9) holds. It follows from (2.10) that

$$
\hat{\lambda}_{i, i}^{(s)} f_{i i_{i}}^{\prime}(0)+\lambda_{2 . i}^{(s)} f_{i_{i}+1}^{\prime}(0)+\lambda_{3, i}^{(s)} f_{i_{i+2}}^{\prime}(0)=0, \quad s=1, \ldots, m_{i}-2
$$

From Lemma 2.1 it follows that the vectors $\mathbf{t}_{i i_{i}}, \mathbf{t}_{i i_{i+1}}, \mathbf{t}_{i_{i+2}}$ are coplanar for $s=1, \ldots, m_{i}-2$ and therefore $\mathbf{t}_{i i_{1}}, \ldots, \boldsymbol{t}_{i i_{m_{i}}}$ are coplanar as well. This shows $F \in C(E)$.

We may now formulate,
Theorem 2.2. $F \in C(E)$ is the solution of (\mathbf{P}) if and only if

$$
F^{\prime \prime}=\sum_{i=1}^{n} \sum_{s=1}^{m_{i}-2} x_{i s} B_{i s}
$$

where $\alpha_{i s} \in R$.
Proof. Problem (\mathbf{P}) is equivalent to the problem

$$
\begin{equation*}
\text { find } \inf _{G \in L^{2}(E)} \int_{E} G^{2} d t \tag{2.11}
\end{equation*}
$$

when $\int_{E} G(t) B_{i s}(t) d t=d_{i s}, i=1,2, \ldots, n, 1 \leqslant s \leqslant m_{i}-2$, and $G=\left\{g_{i j}\right\}_{i j \in N_{i}}$.
In fact, let

$$
W^{2}(E) \supset Z=\left\{F=\left\{f_{i j}\right\}_{i j \in N_{i}}: f_{i j}(0)=z_{i}, f_{i j}\left(\left\|e_{i j}\right\|\right)=z_{j}\right\}
$$

and consider the one-to-one mapping

$$
Z \ni F=\left\{f_{i j}\right\}_{i j \in N_{e}} \mapsto\left\{g_{i j}\right\}_{i j \in N_{e}}=G \in L^{2}(E)
$$

defined by $g_{i j}=f_{i j}^{\prime \prime}$. By Lemma 2.2, this mapping maps the set $C(E) \subset Z$ onto the submanifold

$$
\left\{G \in L^{2}(E): \int G B_{i s} d t=d_{i s} 1 \leqslant i \leqslant n, 1 \leqslant s \leqslant m_{i}-2\right\} \subset L^{2}(E),
$$

whence we conclude that F solves (\mathbf{P}) if and only if G solves (2.11). Now by a well known Lagrange multiplier theorem applied to problem (2.11) the solutions G and F are of the form

$$
F^{\prime \prime}=G=\sum_{i=1}^{n} \sum_{s=1}^{m_{i}-2} \alpha_{i s} B_{i s}
$$

for some constants $\alpha_{i s} \in R, 1 \leqslant i \leqslant n, 1 \leqslant s \leqslant m_{j}-2$.
Lemma 2.3. The functions $\left\{B_{i s}\right\}, 1 \leqslant i \leqslant n, 1 \leqslant s \leqslant m_{i}-2$, are linearly independent in $L^{2}(E)$.

Proof. Assume that $\sum_{i, s} \alpha_{i s} B_{i s}(t)=0$. Then by construction

$$
f_{i i_{1}}^{\prime \prime}(0)=\alpha_{i 1} B_{i 1}(0)=\alpha_{i 1} \hat{\lambda}_{1, i}^{(1)}=0 .
$$

From (2.5) it follows that $\alpha_{i 1}=0$. Further $f_{i i_{2}}^{\prime \prime}(0)=\alpha_{i 1} \lambda_{2, i}^{(1)}+\alpha_{i 2} \lambda_{1, i}^{(2)}=0$ and therefore $\alpha_{i 2} i_{1, i}^{(2)}=0$ and $\alpha_{i 2}=0$. Also

$$
f_{i i 3}^{\prime \prime}(0)=\alpha_{i 1} \lambda_{3, i}^{(1)}+\alpha_{i 2} \lambda_{2, i}^{(2)}+\alpha_{i 3} \lambda_{1, i}^{(3)}=0+\alpha_{i 3} \lambda_{1, i}^{(3)}=0,
$$

and so $\alpha_{i 3}=0$. Continuing in a similar manner we obtain $\alpha_{i 1}=\alpha_{i 2}=\cdots=$ $\alpha_{i m_{i}-2}=0$.

We immediately have the following corollary.

Corollary 2.1. $\quad F \in C(E)$ solves (\mathbf{P}) if and only if $F^{\prime \prime}=\sum_{t=1}^{n} \sum_{s=1}^{m_{i}-2} x_{i s} B_{i s}$. The coefficients $\alpha_{i s}$ are obtained as the unique solution to the linear system of equations

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{s=1}^{m_{i}-2} \alpha_{i s} \int_{E} B_{i s} B_{k l} d t=d_{k l}, \quad 1 \leqslant k \leqslant n, \quad 1 \leqslant l \leqslant m_{k}-2 \tag{2.12}
\end{equation*}
$$

The system matrix $\left\{\int B_{i s} B_{k i}\right\}_{i s, k t}$ is symmetric and positive definite, provided that the same enumeration is used for the unknowns and the equations.

Remark 2.1. For a corner where $m_{i}=2$ we have $f_{i j}^{\prime \prime}(0)=0, j=i_{1}, i_{2}$.
Remark 2.2. It is rather easy to see that $d_{k l}=0, k=1,2, \ldots, n$, $l=1,2, \ldots, m_{k}-2$ if and only if all the points $\left\{V_{i}, z_{i}\right\}_{i=1}^{n}$ are coplanar. In
this case the interpolating curve network $\left\{f_{i j}\right\}_{i j \in N_{e}}$ that solves (\mathbf{P}) consists of line segments only.

Remark 2.3. In the univariate case the functions $B_{i s}$ correspond to the well known hat functions (linear B-Splines) over the particular knot set. Also in the univariate case these hat functions are continuous contrary, in general, to the present case.

Remark 2.4. The number of the edges of T is $3(n-2)-(k-3)$, where k denotes the number of boundary edges. The number of the unknowns in the system (2.12) is

$$
\begin{aligned}
\sum_{i=1, m_{i} \geqslant 3}^{n}\left(m_{i}-2\right) & =\sum_{i=1, m_{i} \geqslant 3}^{n} m_{i}-2 \sum_{i=1, m_{i} \geqslant 3}^{n} 1 \\
& =\sum_{i=1}^{n} m_{i}-2 \sum_{i=1}^{n} 1=2[3(n-2)-(k-3)]-2 n \\
& =4 n-2 k-6 .
\end{aligned}
$$

Since $k \geqslant 3$ then the number of unknowns does not exceed $4(n-3)$.

Example. Let us consider the data obtained from a regular hexagonal pyramid, see Fig. 2.1. In this case $n=7$ and

$$
\begin{aligned}
& V_{1}=(1,0)=-V_{4}, \quad V_{2}=(1 / 2, \sqrt{3} / 2)=-V_{5}, \\
& V_{3}=(-1 / 2, \sqrt{3} / 2)=-V_{6}, \quad V_{7}=(0,0) .
\end{aligned}
$$

Also we take

$$
z_{i}=0, \quad i=1, \ldots, 6, \quad z_{7}=-10 .
$$

Then

$$
N_{e}=\{12,23,34,45,56,61,71,72,73,74,75,76\},
$$

and

$$
\begin{array}{cl}
N_{1}=\{12,17,16\}, \quad N_{2}=\{23,27,21\}, \quad N_{3}=\{34,37,32\}, \\
N_{4}=\{45,47,43\}, \quad N_{5}=\{56,57,54\}, \quad N_{6}=\{61,67,65\}, \\
N_{7}=\{71,72,73,74,75,76\}, & \\
m_{i}=3, \quad i=1, \ldots, 6, \quad m_{7}=6, \quad\left\|e_{i j}\right\|=1, \quad i j \in N_{e} .
\end{array}
$$

We define $B_{i s}, i=1, \ldots, 7$ by (2.6).

The unique triples of numbers that define $B_{i 1}, i=1, \ldots, 6$ are

$$
\lambda_{1, i}^{(1)}=1, \quad \lambda_{2, i}^{(1)}=-1, \quad \lambda_{3, i}^{(1)}=1, \quad i=1, \ldots, 6 .
$$

For $B_{7 s}, s=1, \ldots, 4$ we have

$$
\lambda_{1.7}^{(s)}=1, \quad \lambda_{2.7}^{(s)}=-1, \quad \lambda_{3.7}^{(s)}=1, \quad s=1, \ldots, 4 .
$$

To find the solution we have to solve the system of linear equations (2.12), i.e.,

$$
\left\langle\sum_{i=1}^{7} \sum_{j=1}^{m_{1}-2} \alpha_{i j} B_{i j}, B_{k l}\right\rangle=d_{k l}
$$

where $d_{k \prime}=10, k=1, \ldots, 6, l=1 ; k=7, l=1, \ldots, 4$. This system can be efficiently assembled taking into account the support properties of the functions $B_{k l}$. For the convenience of the reader we give the first equation. Since B_{11} has support only on the edges e_{12}, e_{17}, and e_{16} one easily finds, cf. Fig. 2.1, the first equation to be

$$
x_{11}+\alpha_{21} / 6+x_{61} / 6-\alpha_{71} / 6=d_{11}=10 .
$$

After some computations one obtains

$$
x_{i 1}=12, \quad i=1, \ldots, 6, \quad \alpha_{71}=x_{74}=36, \quad x_{72}=\alpha_{73}=72 .
$$

Therefore

$$
f_{12}^{\prime \prime}(t)=f_{23}^{\prime \prime}(t)=f_{34}^{\prime \prime}(t)=f_{45}^{\prime \prime}(t)=f_{56}^{\prime \prime}(t)=f_{61}^{\prime \prime}(t)=12, \quad 0 \leqslant t \leqslant 1
$$

and then

$$
f_{12}(t)=f_{23}(t)=f_{34}(t)=f_{45}(t)=f_{56}(t)=f_{61}(t)=6 t^{2}-6 t, \quad 0 \leqslant t \leqslant 1
$$

We have also

$$
f_{7 j}^{\prime \prime}(1)=-12 \quad \text { and } \quad f_{7 j}^{\prime \prime}(0)=36, \quad j=1, \ldots, 6
$$

Then

$$
f_{7 j}^{\prime \prime}(t)=-48 t+36, \quad 0 \leqslant t \leqslant 1
$$

and

$$
f_{7 j}(t)=-8 t^{3}+18 t^{2}-10, \quad 0 \leqslant t \leqslant 1, \quad j=1, \ldots, 6 .
$$

Note that although the data are convex, the functions $f_{7 j}, j=1, \ldots, 6$, are not convex.

3. The Constrained Minimization Problem

In this section we will assume that the triangulated domain $D=\bigcup_{i j k \in I_{t}} T_{i j k} \subset R^{2}$ is convex. Now, for a given triangulation, consider the function $l: D \rightarrow R$ with the property that l is continuous, linear on each triangle, and $l\left(V_{i}\right)=z_{i}$, for $1 \leqslant i \leqslant n$, i.e., l is the piecewise linear interpolant of the data points.

Definition 3.1. The data $\left(x_{i}, y_{i}, z_{i}\right), \mathrm{l} \leqslant i \leqslant n$, are said to be convex with respect to a given triangulation if the function l is convex. The data are strictly convex if in addition the gradient of I has a jump discontinuity across each interior edge.

Note that for given data the function l may be convex with respect to one triangulation but not with respect to another as the following simple example shows. Let $\left(V_{1}, z_{1}\right)=(1,0,1),\left(V_{2}, z_{2}\right)=(0,1,0),\left(V_{3}, z_{3}\right)=$ $(-1,0,1)$, and $\left(V_{4}, z_{4}\right)=(0,-1,0)$. Consider the two triangulations,

$$
T_{1}=\left\{\left(V_{1}, V_{2}, V_{4}\right),\left(V_{2}, V_{3}, V_{4}\right)\right\}, \quad T_{2}=\left\{\left(V_{1}, V_{2}, V_{3}\right),\left(V_{3}, V_{4}, V_{1}\right)\right\} .
$$

The data are convex w.r.t. T_{1} but not w.r.t. T_{2}.
If the points z_{j} are samples of a strictly convex function then there exists a unique triangulation Δ such that the data are convex with respect to Δ. In this case the function l is the largest convex function which is minorant of the data values, i.e.,

$$
l(x)=\sup \left\{L(x): L: R^{2} \rightarrow R, L \text { linear, } L\left(x_{i}, y_{i}\right) \leqslant z_{i}, \forall i\right\} .
$$

The function l is then the piecewise linear convex interpolant. Compare also [11, Chap. 10; 23].

Next we introduce the following concept.

Definition 3.2. Every function in the set $C(E)$ whose restriction to each edge is convex will be called edge convex.

We shall in the following characterize and compute such an edge convex function of minimal norm and therefore we consider the problem,
$\left(\mathbf{P}_{c}\right)$ Find $F \in C(E)$, minimizing the functional

$$
\int_{E} F^{\prime \prime 2}(t) d t
$$

under the side condition $f_{i j}^{\prime \prime}(t) \geqslant 0$, for all $i j \in N_{e}$.

Arguing as in the previous section we see that $\left(\mathbf{P}_{c}\right)$ has the following equivalent formulation,
$\left(\mathbf{P}_{c}^{\prime}\right)$ Find $G \in L^{2}(E)$, minimizing the functional

$$
\int_{E} G^{2}(t) d t
$$

under the linear side conditions

$$
\int_{E} G(t) B_{k l}(t) d t=d_{k l}, \quad 1 \leqslant k \leqslant n, \quad 1 \leqslant l \leqslant m_{k}-2
$$

and under the side condition $G(t) \geqslant 0$.
Let us state the following theorem which is the main result of the paper. Here $(x)+$ denotes the positive part of x.

Theorem 3.1. Assume that data are strictly convex. Then the problem $\left(\mathbf{P}_{r}\right)$ has a unique solution F where $F^{\prime \prime}$ is of the form

$$
F^{\prime \prime}(t)=\left(\sum_{i=1}^{n} \sum_{s=1}^{m_{i}-2} x_{i s} B_{i s}(t)\right)_{+}
$$

Moreover the coefficients $\alpha_{i s}$ are determined as a solution of the nonlinear system of equations

$$
\begin{equation*}
\int_{E}\left(\sum_{i=1}^{n} \sum_{s=1}^{m_{i}-2} \alpha_{i, s} B_{i s}(t)\right)_{+} B_{k l}(t) d t=d_{k l}, \quad 1 \leqslant k \leqslant n, \quad 1 \leqslant l \leqslant m_{k}-2 \tag{3.1}
\end{equation*}
$$

We will prove Theorem 3.1 and therefore we need a few auxiliary lemmas and definitions. First we have,

Lemma 3.1. If the data are convex (strictly convex) then there exists a convex (strictly convex) function $\psi \in C^{\infty}\left(R^{2}\right)$ interpolating the points $\left(x_{i}, y_{i}, z_{i}\right)$, i.e., such that $\psi\left(x_{i}, y_{i}\right)=z_{i}, 1 \leqslant i \leqslant n$.

Proof. Consider first the case when the data are strictly convex. Then for each point $V_{i}, 1 \leqslant i \leqslant n$, there exists an affine function $L_{i}(x, y)$ such that $L_{i}\left(V_{i}\right)=l\left(V_{i}\right)=z_{i}$ and $L_{i}(x, y)<l(x, y)$ if $(x, y) \neq V_{i}$. Then there also exists a constant $c>0$ such that

$$
c\left|(x, y)-V_{i}\right|^{2}+L_{i}(x, y)<l(x, y), \quad \text { if } \quad(x, y) \neq V_{i}
$$

Now let $0 \leqslant \varphi \in C_{0}^{\infty}\left(R^{2}\right)$ be such that $\int_{R^{2}} \varphi(x, y) d x d y=1, \int x \varphi d x d y=$ $\int y \varphi d x d y=0$ and take $\varphi_{\varepsilon}(x, y)=\left(1 / \varepsilon^{2}\right) \varphi(x / \varepsilon, y / \varepsilon)$. Next define the function L by

$$
L(x, y)=\max _{1 \leqslant i \leqslant n}\left\{L_{i}(x, y)+c\left|(x, y)-V_{i}\right|^{2}\right\}
$$

so that $L(x, y)=L_{i}(x, y)+c\left|(x, y)-V_{i}\right|^{2}$ in some neighbourhood of each point V_{i} and $L<l$ if $(x, y) \neq V_{i}$. Consider the function $q=L * \varphi_{\varepsilon}$ ($*$ denotes convolution). By our assumptions we have

$$
\begin{aligned}
q(x, y) & =\left(c\left|(x, y)-V_{i}\right|^{2}+L_{i}(x, y)\right) * \varphi_{\varepsilon} \\
& =c\left|(x, y)-V_{i}\right|^{2}+L_{i}(x, y)+c \int\left(x^{2}+y^{2}\right) \varphi_{\varepsilon}(x, y) d x d y
\end{aligned}
$$

in some neighbourhood of each V, provided that $\varepsilon>0$ is chosen small enough. Therefore we may take

$$
\psi=q-c \int\left(x^{2}+y^{2}\right) \varphi_{\varepsilon}(x, y) d x d y
$$

It is then clear that $\psi\left(V_{i}\right)=z_{i}, \psi \in C^{\infty}\left(R^{2}\right), \psi \leqslant l$ and that ψ is strictly convex. Next, if the data are just convex, we may take $c=0$ in the previous argument and the proof of the lemma is complete.

To proceed we need to establish the connection between the signs of the second order divided differences $d_{k}, 1 \leqslant k \leqslant n, 1 \leqslant l \leqslant m_{k}-2$ as defined in (2.10) and the convexity of our data. We will subsequently assume, as in (2.5), that the sets N_{i} have been ordered so that $\lambda_{1, i}^{(s)}>0$ for all i and s.

Let us now consider two adjacent faces $E_{i i_{s}}=\left\{(x, y, l(x, y)):(x, y) \in T_{i i_{i} i_{+1}}\right\}$ and $E_{i i_{+1}}=\left\{(x, y, l(x, y)):(x, y) \in T_{i i_{s+1} i_{++2}}\right\}$ of the graph of l. Further let us introduce the associated triple product $\left(\mathbf{t}_{i i_{s}} \times \mathbf{t}_{i i_{+i}}\right) \circ \mathbf{t}_{i i_{s+2}}$ where $\mathbf{t}_{i j}$ now is given by $\mathrm{t}_{i j}=\left(\left(x_{j}-x_{i}\right) /\left\|e_{i j}\right\|,\left(y_{j}-y_{i}\right) /\left\|e_{i j}\right\|, z_{j}-z_{i}\right)$. It is clear that the following lemma is valid.

Lemma 3.2. The data are convex if and only if

$$
\left(\mathbf{t}_{i i_{s}} \times \mathbf{t}_{i_{s+1}}\right) \cdot \mathbf{t}_{i i_{+2}} \geqslant 0
$$

for $1 \leqslant i \leqslant n, 1 \leqslant s \leqslant m_{i}$. Similarly, the data are strictly convex, if and only if all these products are positive.

Corollary 3.1. The data are convex (strictly convex) if and only if $d_{i s} \geqslant 0\left(d_{i s}>0\right)$ for all $i=1,2, \ldots, n$ and $s=1,2, \ldots, m_{i}$.

Proof. It follows from (2.10) and (2.4) that $d_{i s}=0$ if and only if the vectors $\mathbf{t}_{i i_{s}}, \mathbf{t}_{i_{s+1}}$, and $\mathbf{t}_{i_{i_{s+2}}}$ are coplanar (the argument is as in the proof of Lemma 2.1). Next, using that $\lambda_{1, i}^{(s)}>0$, it is easy to see, e.g., by varying the value of $z_{i,}$ only, that $d_{i s}>0$ if and only if $\left(\mathbf{t}_{i i^{\prime}} \times \mathbf{t}_{i i_{s+i}}\right){ }_{\mathbf{t}_{i i_{s}+2}}>0$.

Note that in this corollary s is assumed to run through all the values $l \leqslant s \leqslant m_{i}$ whereas in Theorem 2.2 and Theorem 3.1 only the values $s=1,2, \ldots, m_{i}-2$ appear. For the proof of Theorem 3.1 we need a slightly sharper characterization of data convexity, using only basis functions $B_{i s}$, $1 \leqslant n, 1 \leqslant s \leqslant m_{i}-2$. Such a result is given in the following lemma.

Lemma 3.3. The ordering of the sets N_{i}, i.e., the way of defining the basis functions $B_{i s}$, may be chosen in such a way that the data are convex (strictly convex) if and only if $d_{i s} \geqslant 0\left(d_{i s}>0\right), 1 \leqslant i \leqslant n, 1 \leqslant s \leqslant m_{i}-2$.

Proof. Let us introduce the terminology that an edge $e_{k r}$ is covered by the ordering of the sets $N_{i}=\left(i i_{1}, i i_{2}, \ldots, i i_{m_{i}}\right)$ if it is true either that $r=k_{v}$ with $1<v<m_{k}$ or $k=r_{v}$ with $1<v<m_{r}$.

It suffices to prove that the ordering can be done in such way that all the edges $e_{k r} \not \supset \partial D$ are covered. In fact, if all these edges are covered, then for an arbitrary non-boundary edge $e_{k r}$ either the condition $d_{k v-1}=$ $\left\langle F^{\prime \prime}, B_{k v-1}\right\rangle>0$ or the condition $d_{r v-1}=\left\langle F^{\prime \prime}, B_{r v-1}\right\rangle>0$ enters, guaranteeing convexity across the edge $e_{k r}$.

Consider first the set ∂D of boundary points. For any $V_{i} \in \partial D$ we choose the ordering of N_{i} such that $e_{i i_{1}}$ and $e_{i m_{m_{i}}}$ are the boundary edges. Then all non-boundary edges emanating from these points are covered.
Next consider the set W_{1} of interior points which have some boundary point as a neighbor. For each $V_{i} \in W_{1}$ there exist V_{j} and $V_{j} \in \hat{\partial} D$ such that the triangle $T_{i j k} \in D$. Choose the ordering of N_{i} such that $i_{1}=k$ and $i_{m_{i}}=j$. Then all the edges emanating from $V_{i} \in W_{1}$ are covered.

Let W_{2} be the set of points not in $\partial D \cup W_{1}$ having some point in W_{1} as a neighbour. For each $V_{i} \in W_{2}$ there exist V_{j} and $V_{k} \in W_{1}$ such that $T_{i j k} \in D$. Choose the ordering of N_{i} so that $i_{1}=k$ and $i_{m_{i}}=j$. Then all edges emanating from the points $V_{i} \in W_{2}$ are covered.

Proceeding in a similar way with sets W_{3}, W_{4}, \ldots until the point set $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ is exhausted, we obtain an ordering such that all interior edges are covered.

Remark 3.1. If the condition that all edges are covered is violated then it is possible to construct an example which shows that the function l may be nonconvex although $d_{i s} \geqslant 0,1 \leqslant i \leqslant n, 1 \leqslant s \leqslant m_{i}-2$.

In order to proceed with the proof of Theorem 3.1 we will use some results from the theory of convex functionals in Hilbert spaces.

Let H be a Hilbert space, $C \subset H$ a closed, convex subset,

$$
A: H \rightarrow R^{N}
$$

a bounded, linear mapping and $y_{0} \in R^{N}$ a fixed vector. $A^{*}: R^{N} \rightarrow H$ denotes the dual mapping. Consider the following minimization problem
($\mathbf{P}^{\prime \prime}$) Find $x \in H$, minimizing the functional $\|x\|^{2}$ under the side condition $A x=y_{0}$ and $x \in C$.

It is clear that there exists a unique solution x, provided that the domain of definition $\left\{x \in H: A x=y_{0}, x \in C\right\}$ is non-empty.

Theorems characterizing the solution of problem ($\mathbf{P}^{\prime \prime}$) have been given, e.g., by Micchelli and Utreras [17] and Chui, Deutsch, and Ward [9]. A thorough analysis of this and similar problems is given in the two recent papers [9, 10]. See in particular Theorem 3.2 in [9], where we can find the the following result.

Theorem 3.2. Assume that $y_{0} \in \operatorname{int}(A C)$. Then there exists a unique solution x of problem $\left(\mathbf{P}^{\prime \prime}\right)$ and x is of the form

$$
x=P_{C}\left(A^{*} y\right)
$$

for some $y \in R^{N}$. Conversely, if $x=P_{C}\left(A^{*} y\right)$ for some $y \in H$ and $A x=y_{0}$ then x is the solution of $\left(\mathbf{P}^{\prime \prime}\right)$.

Here P_{C} denotes the orthoprojection on the closed convex set C and $A C$ is the set of image points $A C=\left\{y \in R^{N}: y=A x\right.$ for some $\left.x \in C\right\}$. Further $\operatorname{int}(A C)$ is the interior of $A C$,

Returning to the problem (\mathbf{P}_{c}^{\prime}) we assume first that the definition of the functions $B_{k l}$ has been made according to the construction in Lemma 3.3. Let the mapping

$$
A: L^{2}(E) \rightarrow R^{N}, \quad N=\sum_{k=1}^{n}\left(m_{k}-2\right)
$$

be defined by

$$
L^{2}(E) \ni G \mapsto\left\{\int_{E} G(t) B_{k l}(t) d t\right\} \in R^{N}
$$

$1 \leqslant k \leqslant n, 1 \leqslant l \leqslant m_{k}-2$ and let $y_{0}=\left\{d_{k l}\right\} \in R^{N}$. Then the dual mapping A^{*} has the form

$$
R^{N} \ni \alpha=\left\{\alpha_{k l}\right\} \mapsto \sum_{k=1}^{n} \sum_{l=1}^{m_{k}-2} \alpha_{k l} B_{k l}=A^{*} \alpha=L^{2}(E)
$$

Further, take $C=\left\{G \in L^{2}(E): G(t) \geqslant 0\right\}$. It is clear that A is linear and bounded and that $C \subset L^{2}(E)$ is closed and convex. It remains only to verify the condition that $y_{0}=\left\{d_{k}\right\}$ is an interior point of $A C$.

Now, assuming that the data are strictly convex, there exists by Lemma 3.1 a strictly convex function $\psi \in C^{\infty}\left(R^{2}\right)$ such that $\psi\left(x_{i}, y_{i}\right)=z_{i}$, $1 \leqslant i \leqslant n$. Let $F_{0}=\left.\psi\right|_{E}$ and $G_{0}=F_{0}^{\prime \prime}$. Consequently $G_{0}>0$ on each edge $e_{i j}$, i.e., $G_{0} \in C$ and by Lemma 2.2 we have $A G_{0}=y_{0}$. Consider some neighbourhood $\left\{y:\left|y-y_{0}\right|<\varepsilon\right\}$ of y_{0}. If $\varepsilon>0$ is small enough we have $y=\left\{c_{k j}\right\}$ with $c_{k l}>0$ for each y in this neighbourhood. Further, by solving the linear system

$$
A A^{*} \beta=y-y_{0}
$$

we get $A G=y$ where $G=G_{0}+A^{*} \beta$. Since $\inf _{E} G_{0}>0$ it is clear that $\inf _{E} G>0$ if ε has been taken small enough. This proves that y_{0} is an interior point of $A C$. By Theorem 3.2 we then conclude that (\mathbf{P}_{c}^{\prime}) has a unique solution G. Since it is clear that $P_{C}(x)=x_{+}$for every $x \in L^{2}(E)$ it follows that (\mathbf{P}_{c}^{\prime}) has a unique solution of the form $G=\left(\sum_{i} \sum_{s} \alpha_{i s} B_{i s}\right)_{+}$. Then it follows that $\left(\mathbf{P}_{c}\right)$ has a unique solution F with $F^{\prime \prime}$ of the form $F^{\prime \prime}=$ ($\left.\sum_{i} \sum_{s} \alpha_{i s} B_{i s}\right)_{+}$. It also follows that (3.1) is valid, and conversely, that any solution $\left\{x_{i s}\right\}$ of (3.1) gives the solution F of $\left(\mathbf{P}_{c}\right)$ via the equation $F^{\prime \prime}=$ ($\left.\sum_{i} \sum_{s} x_{i s} B_{i s}\right)_{+}$. This representation of $F^{\prime \prime}$ has thus been established for the particular choice of a basic network $\left\{B_{i s}\right\}, 1 \leqslant i \leqslant n, 1 \leqslant s \leqslant m_{i}-2$, such that all edges are covered. However, with given strictly convex data the function $\sum_{i} \sum_{s} x_{i s} B_{i s}(t)$ may be represented in any other permitted basic network $\left\{B_{i, s}^{\prime}\right\}$ (since $\sum_{i} \sum_{s} x_{i s} B_{i s}(t)$ represents the second derivative of a unique function in $C(E)$) so that

$$
\sum_{i} \sum_{s} \alpha_{i s} B_{i s}(t)=\sum_{i} \sum_{s} \alpha_{i s}^{\prime} B_{i s}^{\prime}(t) .
$$

Therefore the statements in Theorem 3.1 are true for any basic network, provided that the data are strictly convex. This completes the proof of Theorem 3.1.

Note that Theorem 3.1 states that the function $F^{\prime \prime}(t)=(G(t))_{+}$, with

$$
G(t)=\sum_{i=1}^{n} \sum_{s=1}^{m_{i}-2} x_{i s} B_{i s}(t)
$$

is uniquely defined. In order to obtain a satisfactory theory we need to know whether also the coefficients $\left\{\alpha_{i s}\right\}$ solving Eq. (3.1) are unique. This problem is resolved by the following theorem.

Theorem 3.3. If the coefficients $d_{i s}, 1 \leqslant i \leqslant n, 1 \leqslant s \leqslant m,-2$, are given by strictly convex data, then Eq. (3.1) has a unique solution $\left\{x_{i s}\right\}$.

Proof. It suffices to prove that the $\left\{\alpha_{i s}\right\}$ are uniquely determined by the solution F via the equality

$$
F^{\prime \prime}(t)=(G(t))_{+}=\left(\sum_{i=1}^{n} \sum_{s=1}^{m_{i}-2} \alpha_{i s} B_{i s}(t)\right)_{+}
$$

Now consider a fixed point V_{i}. Since G is edge-wise linear we first conclude that if the restriction $\left.G_{+}\right|_{e_{i s}} \neq 0$ is known then $\left.G\right|_{e_{i s}}$ is uniquely determined. Secondly assume that $\left.G\right|_{e_{i}} \not \equiv 0$ for all but at most two adjacent edges $e_{i q}$ and $e_{i r}$. Without loss of generality we may take $e_{i q}=e_{i, m_{i}-1}$ and $e_{i r}=e_{i, m_{i}}$. Thus $\left.G\right|_{e_{i k}}$ is known for $1 \leqslant s \leqslant m_{i}-2$.

Arguing as in the proof of Lemma 2.3 we conclude that $f_{i i_{1}}^{\prime \prime}=\alpha_{i 1} B_{i 1}(0)$ is uniquely defined, i.e., that $\alpha_{i 1}$ is uniquely defined. Further $f_{i_{2}}^{\prime \prime}=$ $\alpha_{i 1} \lambda_{2, i}^{(1)}+\alpha_{i 2} \lambda_{1 . i}^{(2)}$ is uniquely defined and therefore also $\alpha_{i 2}$. Continuing in a similar manner we obtain that $\alpha_{i 1}, \alpha_{i 2}, \ldots, \alpha_{i m_{i}-2}$ are uniquely defined.

To conclude the proof it now suffices to verify the following lemma.
Lemma 3.4. G_{+}can vanish on at most two edges $e_{i q}$, $e_{i s}$. Further if $G_{+} \equiv 0$ on two edges $e_{i q}$ and $e_{i s}$ with $\angle\left(e_{i q}, e_{i s}\right) \leqslant \pi$ then they are adjacent, i.e., there is no intermediate edge $e_{i r}$.

Proof. For any triple of edges, $e_{i q}, e_{i r}, e_{i s}$ ordered counter clockwise we may consider the restriction $\left.F\right|_{\left(e_{i q}, e_{i r} \cup e_{i s}\right)}$ and form the second divided difference $\bar{d}_{i q}$ and the basis function $\bar{B}_{i q}$ defined in the same way as in Section 2. Because of convexity it is true that

$$
\bar{d}_{i q}=\left\langle G_{+}, \bar{B}_{i q}\right\rangle>0
$$

which implies that $G_{+}>0$ on at least one of the edges.
Next suppose that $G_{+} \equiv 0$ on two edges $e_{i q}, e_{i s}$ with $\angle\left(e_{i q}, e_{i s}\right) \leqslant \pi$ and $e_{i r}$ is an intermediate edge. Then, considering the restriction of F to $e_{i q} \cup e_{i r} \cup e_{i s}$, we have

$$
\bar{\lambda}_{i q}>0, \quad \bar{\lambda}_{i r} \leqslant 0, \quad \bar{\lambda}_{i s}>0
$$

with these coefficients defined as in Eqs. (2.4) and (2.5). It follows that

$$
\bar{d}_{i q}=\left\langle G_{+}, \bar{B}_{i q}\right\rangle \leqslant 0
$$

which is a contradiction.
Remark 3.2. The assumption that the domain $D=\bigcup_{i j k \in I_{t}}$ is convex is not necessary for the validity of the results in this section. It suffices to assume that there exists a strictly convex function $\psi \in C^{\infty}\left(R^{2}\right)$ (cf. Lemma 3.1) interpolating the points (x_{i}, y_{i}, z_{i}) and that the triangulation of D is a
subset of the triangulation generated by the largest convex minorant I of the data values.

We end our paper by considering a few examples. The first is the example from Section 2, where now convexity is imposed as a shape constraint. Then the equations (3.1) become

$$
\begin{aligned}
& \left\langle\left[\sum_{j=1}^{6} x_{j 1} B_{j 1}+\sum_{s=1}^{4} \alpha_{7 j} B_{7 j}\right]_{+}, B_{k j}\right\rangle=10 \\
& k=7, l=1, \ldots, 6 ; \quad k=1, \ldots, 6 ; \quad l=1
\end{aligned}
$$

The solution is

$$
\begin{aligned}
& \alpha_{71}=\alpha_{74}=30(\sqrt{3}+4) / 13=\alpha_{72} / 2=\alpha_{73} / 2 \\
& \alpha_{i 1}=30(7+5 \sqrt{3}) / 13, \quad i=1, \ldots, 6
\end{aligned}
$$

and

$$
\begin{aligned}
f_{12}(t) & =f_{23}(t)=f_{34}(t)=f_{45}(t)=f_{56}(t)=f_{61}(t) \\
& =-15(\sqrt{3}+4) t(1-t) / 13, \quad 0 \leqslant t \leqslant 1
\end{aligned}
$$

and for $j=1, \ldots, 6$,

$$
f_{7 j}(t)=\left\{\begin{array}{c}
5(6 \sqrt{3}+11)(\sqrt{3}-1-t)^{3} / 13-30(\sqrt{3}+4)(1-t) / 13 \\
0 \leqslant t \leqslant \sqrt{3}-1 \\
-30(\sqrt{3}+4)(1-t) / 13 \\
\sqrt{3}-1 \leqslant t \leqslant 1
\end{array}\right.
$$

TABLE 3.1

	Data		Triangulation			
	V_{1}		V_{6}	V_{1}	V_{2}	
i	x_{i}	y_{1}	z_{i}	V_{6}	V_{2}	V_{3}
1	-2	0	0	V_{6}	V_{3}	V_{4}
2	-1.6	0.2	-2	V_{6}	V_{4}	V_{5}
3	0	0.4	-3	V_{6}	V_{1}	V_{2}
4	1.6	0	-2.5	V_{7}	V_{2}	V_{3}
5	2	0	0	V_{7}	V_{3}	V_{4}
6	-0.5	2.3	-1.7	V_{7}	V_{4}	V_{5}
7	0.5	-2	-1.9	V_{7}	V_{4}	V_{6}

Fig. 3.1. Reconstructions based on Table 3.1. Left, unconstrained case. Right, constrained case.

In general, of course, the equations (3.1) cannot be solved explicitly. We propose to use Newton's method for its solution, similar as in the univariate case, [3]. It can be shown that Newton iteration becomes

$$
\begin{equation*}
\int_{E}\left(\sum_{i, s} \alpha_{i s}^{(r)} B_{i s}(t)\right)_{+}^{0}\left(\sum_{i, s} \alpha_{i s}^{(r+1)} B_{i s}(t)\right) B_{k l}(t) d t=d_{k l} \tag{3.2}
\end{equation*}
$$

$k=1,2, \ldots, n, l=1,2, \ldots, m_{k-2}$. Here

$$
(\varphi(t))_{+}^{0}= \begin{cases}1 & \text { if } \varphi(t) \geqslant 0 \\ 0 & \text { else }\end{cases}
$$

Remark 3.3. As in the univariate case [3] one may verify that the Jacobian occurring in Newton's method (3.2) is positive definite in a sufficiently small neighbourhood around α^{*}, the unique solution of the

TABLE 3.2

Data													
i	1	2	3	4	5	6	7	8	9	10	11	12	13
\boldsymbol{x}_{i}	0.21	0.46	0.83	0.97	0.67	0.53	0.28	0.07	0.06	0.25	0.49	0.67	0.77
y_{i}	0.88	0.93	0.89	0.54	0.71	0.74	0.77	0.70	0.43	0.56	0.61	0.54	0.45
i	14	15	16	17	18	19	20	21	22	23	24	25	
x_{i}	0.90	0.66	0.50	0.32	0.25	0.46	0.57	0.75	0.94	0.46	0.18	0.14	
y_{i}	0.31	0.35	0.47	0.44	0.31	0.33	0.20	0.25	0.05	0.07	0.19	0.06	

Fig. 3.2. Reconstruction based on Table 3.2.
equations (3.1). The ($k l$, is) th element of the Jacobian (evaluated at $\alpha=\alpha^{(r)}$) is

$$
\int_{E}\left(\sum_{i, s} x_{i s}^{(r)} B_{i s}(t)\right)_{+}^{0} B_{i s}(t) B_{k i}(t) d t .
$$

The second example is given in Table 3.1 and the resulting unconstrained and constrained curve networks are displayed in Fig. 3.1. In the final example we consider the convex function

$$
f=5 * \exp \left((x-0.5)^{2}+(y-0.5)^{2}\right)
$$

sampled at 25 points as given in Table 3.2. The reconstruction is given in Fig. 3.2. Here we display only the constrained case since there were no visible differences between the unconstrained and the constrained case (although along some edges the constraint was active). This effect was quite typical in examples with many interpolation points.
In Newton's method we used the unconstrained solution as the starting value for the iterations. In the example from Fig. 3.1 (7 points) the 6th and 7th iterations are identical in double precision arithmetic. For the example from Fig. 3.2 (25 points) the 3rd and 4th iterations are identical.

Acknowledgments

The first two authors were supported by the Swedish Natural Science Research Council The last two authors were supported by the Bulgarian Committee of Science and Education under contract 208/92. We also wish to thank Professor V. Mazya for enlightening discussions.

References

1. H. Aкima, A method of bivariate interpolation and smooth surface fitting for values given at irregularly distributed points, Trans. Math. Soffware 4 (1978), 148-159.
2. L.-E. Andersson and T. Elfving, Interpolation and approximation by monotone cubic splines, J. Approx. Theory 66 (1991), 302-333.
3. L.-E. Andersson and T. Elfing, An algorithm for constrained interpolation, SIAM J. Sci. Statist. Comput. 8 (1987), 1012-1025.
4. R. K. Beatson and Z. Ziegler, Monotonicity preserving surface interpolation, S/AM J. Numer. Anal. 22 (1985), 401-411.
5. C. de Boor and R. Lynch, On splines and their minimum properties, J. Math. Mech. 15 (1966), 953-969
6. C. DE Boor, On best interpolation, J. Approx. Theory 16 (1976), 28-42.
7. R. E. Carlson and F. N. Fritsch, Monotone piecewise bicubic interpolation, SIAM J. Numer. Anal. 22 (1985), 386-400.
8. P. Costantini and F. Fontanella, Shape-preserving bivariate interpolation, SIAM J. Numer. Anal. 27 (1990). 488-506.
9. C. K. Chui, F. Deutsch, and J. D. Ward, Constrained best approximation in Hilbert space, Constr. Approx. 6 (1990), 35-64.
10. C. K. Chun, F. Deutsch, and J. D. Ward, Constrained best approximation in Hilbert space, II, J. Approx. Theory 71 (1992), 213-238.
11. C. K. Chul, "Multivariate Splines," SIAM, Philadelphia, PA, 1988.
12. S. L. Dodd, D. F. McAllister, and J. A. Roulier, Shape-preserving spline interpolation for specifying bivariate functions on grids, IEEE Comput. Graph. Appl. 3 (1983), $70-79$.
13. H. Greiner, A survey on univariate data interpolation and approximation by splines of given shape, Math. Comput. Modelling 15 (1991), 97-106.
14. G. lliev and W. Pollul, Convex interpolation by functions with minimal L_{p}-norm ($1<p<\infty$) of the k-th derivative, in "Proceedings. 13 Spring Conference of the Union of Bulgarian Mathematicians, April 1984."
15. C. L. Lawson, Software for C^{\prime} surface interpolation, in "Mathematical Software, III" (J. R. Rice, Ed.), pp. 161-194, Academic Press, New York, 1977.
16. C. Micchelli, P. Smith, J. Swetits, and J. Ward, Constrained L_{p} approximation, Constr. Approx. 1 (1985), 93-102.
17. C. Micchelli and F. Utreras, Smoothing and interpolation in a convex subset of a Hilbert space, SIAM J. Sci. Statist. Comput. 9 (1988), 728-746.
18. G. M. Nielson, A method for interpolating scattered data based upon a mimimum norm network, Math. Comp. 40 (1983), 253-271.
19. G. M. Nielson, Minimum norm interpolation in triangles, S/AM J. Numer. Anal. 17 (1980), 44-62.
20. G. M. Nielson and R. Franke, A method for construction of surfaces under tension, Rocky Mountain J. Math. 14 (1984), 203-222.
21. J. A. Roulier, A convexity preserving grid refinement algorithm for interpolation of bivariate functions, IEEE Compuf. Graph. Appl. 7 (1987), 57-62.
22. J. W. Schmidt, Rational biquadratic C^{\prime}-splines in S-convex interpolation, Computing 47 (1991), 87-96.
23. D. S. Scotr, The complexity of interpolating given data in three space with a convex function of two variables, J. Approx. Theory 42 (1984), 52-63.
24. F. Utreras and M. L. Varas, Monotone interpolation of scattered data in R^{s}, Constr. Approx. 7 (1991), 49-68.
