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In this paper a characterization of the optimal (using the minimum norm
criterion) interpolant, convex along the edges of a triangulation, using data at the
vertices is obtained. We thereby generalize results obtained by Nielson for the
unconstrained case. c 1995 Academic Press. Inc

1. INTRODUCTION

In a paper by Nielson [18] a method for interpolation of scattered data
in R' is presented. More precisely, given data (X"Yi,Z,)ER', i=l, ...,n, a
bivariate function S with continuous first order partial derivatives and
with the property Six"~ Yi) = =i' i = 1, ... , n, is constructed. The method of
Nielson consists of three separate steps:

(i) Triangulation. The points Vi :=(X,'Yi)ER 2 are used as vertices
of a triangulation of a domain in R 2

. The papers of Lawson [15] and
Akima [1] contain a good discussion of many aspects of triangulating the
convex hull of Vi' i = 1, ... , n.

(ii) Construction of the minimum norm network. We pay special
attention to this part of Nielson's method in our Section 2. We give a new
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proof of his result by using a different approach since this is necessary for
the purposes of this paper.

(iii) Blending. S is extended to the entire domain by means of a
blending method. A detailed description of this step can be found in
Nielson [18, 19].

The paper by Nielson [18] as well as an extension to a case with splines
under tension by Nielson and Franke [20] generalizes well known classical
results for so-called best interpolation of data in R 2 (see, e.g., C. De Boor
and R. Lynch [5], C. De Boor [6]).

Recently many other results generalizing different aspects of best inter­
polation of data in R 2 have appeared. We refer to these as shape preserving
best interpolation. The term shape retlects properties like convexity,
monotonicity, and/or positivity of the interpolant, see, e.g., [14, 16, 2, 3]
and the recent survey [13] by Greiner.

The area of surface fitting combined with shape-preserving interpolation
has also attracted the attention of several researches. We mention, e.g., the
papers by Beatson and Ziegler [4], Carlson and Fritsch [7], Dodd,
McAllister, and Roulier [12, 21], Schmidt [22], and Costantini and
Fontanella [8]. Utreras and Varas in [24] combined the notion of best
interpolation with monotonicity of the interpolant.

The present paper addresses the problem of characterizing the minimum
norm interpolant such that it is convex along the grid lines of a triangular
net. We will refer to such a function as an edge convex network (a more
detailed definition is given in Section 3). The formulation and the proof of
the main result, Theorem 3.1, are given in Section 3. Here we apply
recent results on convex optimization in Hilbert spaces [17,9,10]. We
also pay attention to the problem of characterizing convex data over a
triangulation.

By Theorems 3.1 and 3.2 the minimum norm solution is obtained as the
solution of a nonlinear system of equations. In Section 3 we also formulate
a Newton type algorithm for solving this system and present some
numerical examples.

Remark 1.1. The important problem of extending the edge convex
network into a C'-function which is convex everywhere is very hard for
general convex data. In fact it seems possible to construct examples such
that the edge convex network cannot be extended. See also [8, p. 488].

2. THE UNCONSTRAINED MINIMIZATION PROBLEM

Let n 3 3 be a given integer and Vi = (Xi' Y;) E R 2
, i = 1, ..., n, given data

points. A triangulation T will consist of a collection of non-overlapping,
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non-degenerate closed triangles Tijk with vertices at V" Vi' and Vk , such
that no vertex of one triangle lies on the edge of another triangle.

We denote by It the set of triples of indices that determine the
triangulation T. Let

D= U Tijk
ijk E II

and let aD be the boundary of D. For ijk E It denote by eij the edge going
from V; to Vj . Introduce the edge sets,

N e : = {ij I i, j E { ex, p, }'}, expy E It} , E= U eij'
ijE Nt'

The oriented angle between e ij and ejk will be denoted by L(eij' e ik ).

Let F be a function of two variables defined on E. This function may be
described by the following family of univariate functions,

fiji t) := F( ( 1 - t/lleijll) V; + t V)lleijll) = F(xij(t), J'ij(t)), (2.1 )

with

Xij(t) = (l - r/lleijll) X; + rxill eijll, Yij(t) = (l - rille ijll) Yi + ryille ull,

O~t~lle;;li, Ileijll:=J(x i -x)2+(Yi-YY, ijENe'

The family of functions

F = { t:..} .. "• I} IJEHt'

will be called a curve network. We now introduce some function classes on
the set E of edges:

L2(E) = {F= {lu} UEN,.:fijE L2(0, Ileull)}

W 2(E) = {F= {lu} uEN,:fu,J'u,J'ijE L 2(O, Ileull)}

and

C(E) = {F= {/;j} ijEN,: FE W 2(E), F= HIE, HE C 1(R 2
),

He"j,y;) =Zj, i= 1, ...n}.

The smoothness assumption on C(E), that F is the restriction to E of some
function in C l

( R 2
), should be understood in the following equivalent way.

If we consider the set of functions U;J ijE N, as curves in R 3
, then in every

point V, they have a common tangent plane.
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For FE W 2
( E) let us consider the functional

For a given triangulation and given observation points {=i} we now
consider, following Nielson [18 J, the extremal problem:

Find FE C(E) such that a( F) = infFE CI £1 a( F). (P)

THEOREM 2.1. Problem (P) has a unique solution FE C( E).

Proof Let {Fn } .~. c C(E) be a minimizing sequence. By selecting a sub­
sequence we may assume thatf:;.I1-"-f:; weakly in e(O, lleijll) as n-+XJ.
Here fij.IIE W 2(0, lleijll) and !ij.II(O)=::" fij.II(lieijll)=::j' Further for fij""
!'u. n we have convergence for all t, in particular for t = °and t = lieijll, i.e.,
at the points (x k , Yd. Therefore the limit functions Iij satisfy the same
restrictions on the tangent curves as Iij.,,, i.e., F= {IY} IjElV.,E C(E). Since
a(F) is a quadratic functional it is also clear that F is a minimizer.

Next, if Fo and F} E C( E) are minimizers, then we may conclude, using
that C( E) is convex and that the functional J£ g2 dt is strictly convex in
L 2( E), that I:;. oU) = I:;. I (t) for all t E [0, Ii eIj Ii ]. Since f;j. 0 and IIj. I are equal
at the end points, we conclude that lij.o(t) = Iij.l(t) for all I, and we have
proved uniqueness. I

The solution of problem (P) will be denoted by F and refered to as the
minimum norm network.

In [18J a complete characterization of the solution of (P) is given, i.e.,
a method is described which enables one to find F for any data (x" Yi, =,),
i=l, ... ,n, and any (allowable) triangulation Tof V,=(Xi,)'i), i=l, ...,n.
This method reduces the problem to solving a system of linear equations
for the unknowns aF/ax( V,) and aF/oy( V,), i = I, ..., n. Similarly to the
problem of best interpolation of data in R 2

, the solution is a smooth inter­
polating curve network F = {hj} Ij EN, E C(E) for which the functions {IIj}
are cubic polynomials.

For the purposes of this paper we shall apply a different view. The idea
is to construct a system of simple curve networks, partially linear on the
edges, and to represent the second derivative of the solution of (P) as a
linear combination of the elements of this system.

The notations and definitions in the following are illustrated in Fig. 2. I.
Let us denote

N i := {ij I eij is an edge in E with starting point Vi}' i = I, ..., n. (2.2)

Let m l be the number of elements in N i. Clearly m l ;:: 2 for i = I, ..., nand
m i = 2 only occurs for certain vertices lying on the boundary aD.
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In the subsequent construction of a basic network only those sets for
which m i ~ 3 will enter. In order to avoid repeating the condition mi> 2 we
adopt the convention that the list of indices I, 2, ..., m i - 2 will simply be
empty if m i = 2. Now for such a set N i we define an order of its elements.
The first element ii! is chosen arbitrary. The (k + I )st element is defined
such that iik +! ENi , ii k +! #-ii" r= I, ... ,k and L(e ii" eiih ,) is minimal. In
this way N i becomes an ordered set

N i = {iiI' ... , iim,}' (2.3 )

For the ordered sets N i , defined by (2.2) and (2.3) we define linear
networks on E called basic networks. Although this may be done in several
ways we shall pursue only one possibility.

For a fixed i and for each s = I, ... , ltl i - 2 consider the following linear
system in the unknowns ;,\:Ii , ;,~ti' ;,Iti'

(2.4)

The determinant of (2.4) is equal to 0 if and only if e,i" e il"" and e iia2
(where e denotes a unit vector) are collinear which is impossible since
{eiiJ, q=s, s+ I, s+2 are three different edges in E with a common
vertex. Hence (2.4) always has a unique solution.

If we assume that two of the numbers, e.g., )'\:)i and ),n equal zero, then
it follows Vi,+~ 0= Vi,. Therefore at least two of the numbers },(t)i' ),~:ii' ;.~:ii

are nonzero. It is easy to see that we can choose ii I so that

s= 1, ... , ltl i - 2. (2.5 )
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Moreover, if V j rI= aD then any choice of the initial iiI implies that }.It)j 1= 0,
s= 1,2, ..., m j -2.

In this way for every N j = (iiI' ..., iim ,) we find m j - 2 triples of numbers
A~:;. For each of these triples we construct functions {B j.,}, s=I, ... ,m j -2
on E such that each B js has support only on three edges e j • q' q = i"
i,+ I' i,+ 2 where iq E N j • We take

on e jq , q = i,,, i,.+ I' i'+2' 0 ~ t ~ lied
otherwise.

(2.6 )

Here r = r( q) = rUH;l = j + I, j = 0, I, 2.
Using the particular ordering {iiI' ..., iim ,} chosen for the sets N j we have

thus obtained a network {BiS }' I ~ i ~ n, I ~ s ~ m j - 2 of functions on E.
For later use let us also define functions B,s for s = m, - I and m j by solving
(2.4) with m i + I and m i + 2 replaced by I and 2, respectively, so that, e.g.,
eli, 1:== eli!'

'ret F, G E C( E). For curve networks we define an inner product as

so that a(F) = <F", Gl/).
Consider the set of functions {JU};i EN, as curves in R 3

, cf. (2.1),

Then the vector tuE R 3
,

t U := C~~i~'i, y~~~\f;i(O))

is a tangent vector at the point Vj' Note again that the definition of C( E)

requires that the vectors tiil' t jj" ..., t iimi are coplanar.

LEMMA 2.1. t ii.,' t ii, + I ' t ii., +, are coplanar if and onZv if

(2.7)

where I, \.:lj, A~lj' A~:)i are defined by (2.4).

Proof Assume first that (2.7) holds. From (2.4) and (2.5) it follows that

and the numbers }.\:Ij , Ai:)j, Aj~)j are not simulatenously equal to zero.
Consequently the three vectors are linearly dependent, i.e., they are
coplanar.
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Next let tii"t;;'+I,t ii ,+, be coplanar. Then there exist numbers Iln,
Ili:)" Iii:); that are not simultaneously zero and such that

Then we have

lsi Yi, - Yi + Is) J'i.,+ \ - Y; + Is) Yi,+, - Yi = 0
Ill.i lie II Ill., I" II 1l3.; lie 11

ii, 1( ii. f ->- 1 i1.,.+::

(2.8)

From the first two equations of (2.8) and from (2.4) it follows that there
is a constant C "" 0 such that

Then from the last equation of (2.8) it follows

C(),\:V:;,(O) + ;,i:V;;,+\(O) + J.i:V;".,fO)) = O.

Since C;60, then ;.ltJ:i,fO) +),i:IJ:i;+\(O) +),i:'J:;,+,(O) =0. I
Next we present a Peano-type lemma.

LEMMA 2.2. FE C( E) if and only if for every i, I :::::; i:::::; n it holds

(F", B;s) = d,s,

where
~,(s) ~ (s) ~ (s)
1'1' 1'7' 1,,'

d,s=-lle"11 f=;,-=i)+-lle-"1'1 (=i.+\-=i)+-lle'·'11 (=;,+2-=;)'
II, II.~ -I- 1 11\ + ~

s= I, ... , m,-2.

Proof From the definition of B is , s = 1, ... , m; - 2, it follows

(2.9)

(2.10)
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After integration by parts we have

Now, to establish sufficiency, let FE C(E) and therefore U;J ijEN, have a
common tangent plane in every point Vi' i = I, ... , n. That means for every
such i the vectors til" t ii,+ I' t;;,+2' s = 1, ... , m i - 2 lie in the tangent plane.
Then according to Lemma 2.1

and so from (2.10) we obtain (2.9).
For the necessity assume that (2.9) holds. It follows from (2.10) that

s= I, ... , m;-2.

From Lemma 2.1 it follows that the vectors til"~ t ii, + I' t ii, + 2 are coplanar
for s = 1, ... , In i - 2 and therefore t;;], ... , t a are coplanar as well. This shows
FE C(E). I "',

We may now formulate,

THEOREM 2.2. FE C( E) is the solution of (P) if and only if

n '''1- 2

F" = I: L OCi.,B i.n
i= 1 s= 1

where IJ.;s E R.

Proof Problem (P) is equivalent to the problem

(2.11 )

when IE" G(t) B".(t) tit = el", i = 1, 2, ..., n, 1<:.\' <: m; - 2, and G = {gij} ijEN,'

In fact, let

and consider the one-to-one mapping

Z3F={j·.. } .. N~{g··}.·· \.=GEL2(E)tj UE t' lJ II E! t'
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defined by g ij =fij. By Lemma 2.2, this mapping maps the set C( E) c Z
onto the submanifold

{C E L 2(£): fCB;s £It = d,s I ~ i ~ n, I ~ s ~ m; - 2} c L 2(£),

whence we conclude that F solves (P) if and only if C solves (2.11). Now
by a well known Lagrange multiplier theorem applied to problem (2.11)
the solutions C and F are of the form

n "'i- 2

F" =G = L L (X"S's
i= 1 s= 1

for some constants 70.,.< E R, I ~ i ~ n, 1 ~ s ~ m, - 2. I

LEMMA 2.3. The functions {B;s}, 1~i~n, 1~s~m;-2, are linearly
independent in L 2( E).

Proof Assume that L,." (X,,,B,, (t) = O. Then by construction

From (2.5) it follows that ail = O. Further f;;2(0) = ailAi~; +X il }.\2; = 0 and
thereforex ili.\2; = 0 and a,2 = O. Also

and so a,~ = O. Continuing in a similar manner we obtain Xii = a'2 = .. , =
Ct. im /- 2 = o. I

We immediately have the following corollary.

COROLLARY 2.1. FE C(E) solves (P) ifand only ifF" = L7~ [L;'~-; 2 x;,B,:,.
The coefficients a,:, are obtained as the unique solution to the linear system
of equations

11 I'tJi- 2

I I a,s f B"Bkl dt = dkl ,
i= 1 s= 1 E

1~k ~ n, (2.12)

The system matrix {J B j , Bkl } 'S. kl is symmetric and positive definite, provided
that the same enumeration is used for the unknowns and the equations.

Remark 2.1. For a corner where n1 j =2 we havef,j(O)=O,j= iI' i2.

Remark 2.2. It is rather easy to see that dkl = 0, k = 1, 2, ... , n,
I = I, 2, ..., mk - 2 if and only if all the points { V" :::'j} ;'~ I are coplanar. In
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this case the interpolating curve network {Jij};;EN, that solves (P) consists
of line segments only.

Remark 2.3. In the univariate case the functions B i., correspond to the
well known hat functions (linear B-Splines) over the particular knot set.
Also in the univariate case these hat functions are continuous contrary, in
general, to the present case.

Remark 2.4. The number of the edges of Tis 3(n - 2) - (k - 3), where
k denotes the number of boundary edges. The number of the unknowns in
the system (2.12) is

n n

I (m,-2)= I m;-2 L
i= I. mi~3

= I m;-2 I 1=2[3(n-2)-(k-3)]-2n
i~ I i~ 1

=4n-2k-6.

Since k ~ 3 then the number of unknowns does not exceed 4(n - 3).

EXAMPLE. Let us consider the data obtained from a regular hexagonal
pyramid, see Fig. 2.1. In this case n = 7 and

VI = (1,0) = - V4 , V2 = (1/2, .)3/2) = - Vs ,

V) = ( -1/2, .)3/2) = - V6 , V7 = (0, 0).

Also we take

Then

=;=0, i=I, ... ,6, =7=-10.

N_ = {12, 23, 34,45,56,61,71,72,73,74,75, 76},

and

N] = {12, 17, 16}, N 2 = {23, 27, 21},

N 4 = {45, 47, 43}, N s = {56, 57, 54},

N7 = PI, 72, 73, 74, 75, 76},

N) = {34, 37, 32},

N 6 = {61, 67, 65},

We define B;." i= I, ..., 7 by (2.6).



CONVEX INTERPOLATION

The unique triples of numbers that define Bn , i = I, ..., 6 are

309

i = I, ... , 6.

For B7." S = I, ... ,4 we have

.1"= I, ... ,4.

To find the solution we have to solve the system of linear equations (2.12),
l.e.,

where dkJ=lO, k=I, ... ,6, /=1; k=7, /=1, ... ,4. This system can be
efficiently assembled taking into account the support properties of the
functions BkJ . For the convenience of the reader we give the first equation.
Since B 11 has support only on the edges e 12 , e 17 , and e 16 one easily finds,
cf. Fig. 2.1, the first equation to be

After some computations one obtains

:Xii = 12, i= I, ... , 6,

Therefore

:Xn = :X73 = 72.

and then

We have also

O~t~1

O~t~l.

Then

and );/(0)=36, }=1, ...,6.

and

I~(t) = -48t + 36, O~t~1

o~ t ~ I, } = I, ... , 6.

Note that although the data are convex, the functions 17j' j = I, ..., 6, are
not convex.
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3. THE CONSTRAINED MINIMIZATION PROBLEM

In this section we will assume that the triangulated domain
D = UijkEI/ Tijk C R2 is convex. Now, for a given triangulation, consider the
function I: D -> R with the property that I is continuous, linear on each
triangle, and I( V,.) = ~" for I ~ i ~ n, i.e., I is the piecewise linear interpolant
of the data points.

DEFINITION 3.1. The data (Xi,)'" ~,), I ~ i ~ n, are said to be convex
with respect to a given triangulation if the function [ is convex. The data
are strictly convex if in addition the gradient of I has a jump discontinuity
across each interior edge.

Note that for given data the function I may be convex with respect to
one triangulation but not with respect to another as the following simple
example shows. Let (V1'=1)=(l,0, I), (V2'~2)=(0, 1,0), (V3'=3)=
(-1,0, I), and (V4 , ~4) = (0, -1,0). Consider the two triangulations,

The data are convex W.r.t. T 1 but not w.r.t. T2 •

If the points ~ i are samples of a strictly convex function then there exists
a unique triangulation LJ such that the data are convex with respect to LJ.
In this case the function I is the largest convex function which is minorant
of the data values, i.e.,

[(x) = sup{ L(x) : L: R 2 -> R, L linear, L(x" Yi) ~ ~i' Vi}.

The function I is then the piecewise linear convex interpolant. Compare
also [11, Chap. 10; 23].

Next we introduce the following concept.

DEFINITION 3.2. Every function in the set C( E) whose restriction to
each edge is convex will be called edge convex.

We shall in the following characterize and compute such an edge convex
function of minimal norm and therefore we consider the problem,

(PJ Find FE C(E), minimizing the functional

under the side condition f~ (t) ~ 0, for all ij ENe.
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Arguing as in the previous section we see that (P,.) has the following
equivalent formulation,

(P;) Find GEL 2(E), minimizing the functional

under the linear side conditions

and under the side condition G( t) ~ O.

Let us state the following theorem which is the main result of the paper.
Here (x) + denotes the positive part of x.

THEOREM 3.1. Assume that data are strictly convex. Then the problem
(P .. ) has a unique solution F where F" is of the form

Moreover the coefficients (Xis are determined as a solution of the nonlinear
system of equations

We will prove Theorem 3.1 and therefore we need a few auxiliary
lemmas and definitions. First we have,

LEMMA 3.1. If the data are convex (strictly convex) then there exists a
convex (strictly convex) function t/t E ex (R 2

) interpolating the points
(Xi' Yi' =i)' i.e., such that t/t(x i , Yj) = =j, 1 ~ i ~ n.

Proof Consider first the case when the data are strictly convex. Then
for each point Vi' I ~ i ~ n, there exists an affine function Lj(x, y) such that
L i ( V,) = I( V,) = =i and LAx, y) < I(x, y) if (x, y) I' Vi' Then there also
exists a constant c > 0 such that

640 so :'-2

c I(x, y) - V i l
2 + Lj(x, y) < I(x, y), if (x, Y) # Vi'
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Now let 0 ~ rp E e~.c(R2) be such that JR2 rp(x, y) dx dy = I, Jxrp dx dy =
Jyrpdxdy=O and take rp,(x,y)=(I/E 2 )rp(xlf:, YIE). Next define the
function L by

L(x,y)= max {Li(x,y)+c I(x,y)- Vi 1
2

}
I ~i~n

so that L(x,y)=Li(x,y)+cl(x,y)-Vi I
2 in some neighbourhood of

each point Vi and L < I if (x, y) f= Vi' Consider the function q = L * rpo
(* denotes convolution). By our assumptions we have

q(x, y) = (c I(x, y) - Vi /2 + Li(x, y)) * rp,

= c I(x, y) - Vi l
2 + Li(x, y) +c f(x 2 +J",z) ([Jo(x, y) dx dy

in some neighbourhood of each Vi provided that E> a is chosen small
enough. Therefore we may take

It is then clear that t/J( Vi) =;;; i' t/J E ex (R 2
), t/J ~ I and that t/J is strictly con­

vex. Next, if the data are just convex, we may take c = 0 in the previous
argument and the proof of the lemma is complete. I

To proceed we need to establish the connection between the signs of the
second order divided differences dk {, 1 ~ k ~ n, I ~ I ~ m k - 2 as defined in
(2.10) and the convexity of our data. We will subsequently assume, as in
(2.5), that the sets N i have been ordered so that A(I')i > 0 for all i and s.

Let us now consider two adjacent faces E ii , = {(x, y, i(x, y)) : (x, y) E Tii,I,,]}

and E ii.. ]= {(x, y, I(x, y)) : (x, y) E T ii" lj,.+,} of the graph of I. Further let
us introduce the associated triple product (t ii, x tij, + I)" tij, +' where tij now is
given by tij=((xj-xi)/lleijll, (Yj-Yi)/lleijll, Zj-Zi)' It is clear that the
following lemma is valid.

LEMMA 3.2. The data are convex if and only if

for I ~ i ~ n, I ~ s ~ mi' Similarly, the data are strictly convex, if and only
if all these products are positive.

COROLLARY 3.1. The data are convex (strictly convex) if and only if
dis ~O (dis> 0) for all i= 1, 2, ... , nand s = 1,2, ... , mi'
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Proof It follows from (2.10) and (2.4) that di" =°if and only if the
vectors t'i.' t'i

H
l' and t'i

H
2 are coplanar (the argument is as in the proof of

Lemma 2.1). Next, using that A\:'; > 0, it is easy to see, e.g., by varying the
value of =;. only, that d;" > °if and only if (t;;, x t;;q 1) u t;i'+2 > 0. I

Note that in this corollary s is assumed to run through all the values
I ~ s ~ m; whereas in Theorem 2.2 and Theorem 3.1 only the values
s= 1, 2, ..., m i -2 appear. For the proof of Theorem 3.1 we need a slightly
sharper characterization of data convexity, using only basis functions B;."
I ~ n, I ~ s ~ m i - 2. Such a result is given in the following lemma.

LEMMA 3.3. The ordering of the sets N i , i.e., the way of defining the basis
functions B j,,, may be chosen in such a way that the data are convex (strictly
convex) if and on(y if dis ~ 0 (d j" > 0), 1 ~ i ~ n, 1 ~ s ~ mi - 2.

Proof Let us introduce the terminology that an edge ekr is covered by
the ordering of the sets N; = (ii I' ij2' ... , jim,) if it is true either that r = k v
with 1 < v < m k or k = r v with I < v < m r .

It suffices to prove that the ordering can be done in such way that all the
edges ekr r:t aD are covered. In fact, if all these edges are covered, then
for an arbitrary non-boundary edge ekr either the condition dh _ I =

<F", Bkv -I >> 0 or the condition dr v- 1= <F", B r v-I> > 0 enters, guaran­
teeing convexity across the edge ekr .

Consider first the set aD of boundary points. For any V; E aD we choose
the ordering of N; such that e ;;, and e ii

m
, are the boundary edges. Then all

non-boundary edges emanating from these points are covered.
Next consider the set WI of interior points which have some boundary

point as a neighbor. For each Vi E WI there exist V) and V) E aD such that
the triangle TijkED. Choose the ordering of N j such that i l =k and imi=J.
Then all the edges emanating from Vi E WI are covered.

Let W 2 be the set of points not in aD U WI having some point in WI as
a neighbour. For each V; E W2 there exist V) and Vk E WI such that
T;ik E D. Choose the ordering of N; so that i l = k and im , = J. Then all edges
emanating from the points Vj E W2 are covered.

Proceeding in a similar way with sets W3 , W4 , .•• until the point set
{ VI' V2 , ... , VlI } is exhausted, we obtain an ordering such that all interior
edges are covered. I

Remark 3.1. If the condition that all edges are covered is violated then
it is possible to construct an example which shows that the function I may
be nonconvex although dj" ~ 0, 1~ i ~ n, 1~ s ~ In; - 2.

In order to proceed with the proof of Theorem 3.1 we will use some
results from the theory of convex functionals in Hilbert spaces.
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Let H be a Hilbert space, C c H a closed, convex subset,

A:H ....... R N

a bounded, linear mapping and Yo E R N a fixed vector. A *: R N
....... H denotes

the dual mapping. Consider the following minimization problem

(P") Find x E H, minimizing the functional IIxll 2

under the side condition Ax = Yo and x E C.

It is clear that there exists a unique solution x, provided that the domain
of definition {x E H: Ax = Yo, x E C} is non-empty.

Theorems characterizing the solution of problem (P") have been given,
e.g., by Micchelli and Utreras [17 J and Chui, Deutsch, and Ward [9]. A
thorough analysis of this and similar problems is given in the two recent
papers [9, 10]. See in particular Theorem 3.2 in [9J, where we can find the
the following result.

THEOREM 3.2. Assume that Yo E inti AC). Then there exists a unique
solution x of problem (P") and x is of the form

x = PciA*y)

for some YER N
. Conversezr, if x=PciA*y) for some yEH and Ax=yo

then x is the solution of iP").

Here Pc denotes the orthoprojection on the closed convex set C and AC
is the set of image points A C = {y E K"": y = Ax for some x E C}. Further
int(AC) is the interior of AC,

Returning to the problem (p;.) we assume first that the definition of the
functions Bkl has been made according to the construction in Lemma 3.3.
Let the mapping

N= I imk -2)
k~l

be defined by

I ~ k ~ n, I ~ I ~ mk - 2 and let Yo = {dkl } ERN. Then the dual mapping A *
has the form

/J mk-2

R N
'3 a = {ad f---+ I I aklBkl = A *rx. = L 2(E).

k= I 1= I
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Further, take C = {GEL 2( E): G( t) ~ O}. It is clear that A is linear and
bounded and that C c L 2( E} is closed and convex. It remains only to verify
the condition that Yo = {dkl } is an interior point of A C.

Now, assuming that the data are strictly convex, there exists by
Lemma 3.1 a strictly convex function l/JECX (R 2

) such that l/J(Xi'Yi}=~i'

I ::.;; i::.;; n. Let Fo = IjJI E and Go = F~. Consequently Go> 0 on each edge eij,

i.e., Go E C and by Lemma 2.2 we have AGo = Yo' Consider some
neighbourhood {y: Iy - Yol < e} of Yo. If e > 0 is small enough we have
y = { CI./} with c1./ > 0 for each Y in this neighbourhood. Further, by solving
the linear system

AA*fJ=y-yo

we get AG = Y where G = Go + A *fJ. Since infE Go> 0 it is clear that
infE G> 0 if e has been taken small enough. This proves that Yo is an inte­
rior point of AC. By Theorem 3.2 we then conclude that (P:) has a unique
solution G. Since it is clear that Pelx) = x + for every x E e(E) it follows
that (P;) has a unique solution of the form G = eL.i L., 'Xi.,BiJ +. Then it
follows that (P,) has a unique solution F with F" of the form F" =
(L.i I., 'Xi' Bi,) +. It also follows that (3.1) is valid, and conversely, that any
solution {Xi'} of(3.1) gives the solution Fof(P c ) via the equation F"=
(L.i.L., xi"Bis ) + . This representation of F" has thus been established for the
particular choice of a basic network {Bis }, I::.;; i::';; n, I::.;; s::';; In i - 2, such
that all edges are covered. However, with given strictly convex data the
function Li L.s Xis Bi,( t) may be represented in any other permitted basic
network {B;,} (since 1:i.L.s 'Xi" B i.' ( t) represents the second derivative of a
unique function in C( E» so that

j .\' j s

Therefore the statements in Theorem 3.1 are true for any basic network,
provided that the data are strictly convex. This completes the proof of
Theorem 3.1.

Note that Theorem 3.1 states that the function F" (t) = (G( t)) +, with

II n1j- 2

G(t) = I I 'X/I Bis(t),
i= 1 .~= 1

is uniquely defined. In order to obtain a satisfactory theory we need to
know whether also the coefficients {'Xis} solving Eq. (3.1 ) are unique. This
problem is resolved by the folIowing theorem.

THEOREM 3.3. If the coefficients d i,,, I::.;; i::';; n, I::.;; s::.;; In, - 2, are given
by strictly convex data, then Eq. (3.1) has a unique solution {Xi,,}.
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Proof It suffices to prove that the {oc;,} are uniquely determined by the
solution F via the equality

Now consider a fixed point Vi' Since G is edge-wise linear we first conclude
that if the restriction G+ Ie" ¥' 0 is known then G Iej, is uniquely determined.
Secondly assume that Gle" ¥' 0 for all but at most two adjacent edges e iq

and eir' Without loss of generality we may take eiq = e i. nt, _ I and eir = e i. nt,'

Thus G Ie" is known for 1~ s ~ m i - 2.
Arguing as in the proof of Lemma 2.3 we conclude that!.':, =OCi1BiI(O) is

uniquely defined, i.e., that (Xi} is uniquely defined. Further f::, =
XilAi~;+OCi2A(I~; is uniquely defined and therefore also oc i2 . Continuing i~ a
similar manner we obtain that (Xii' OCi2, ... , (Xint,-2 are uniquely defined.

To conclude the proof it now suffices to verify the following lemma.

LEMMA 3.4. G + can vanish on at most t»'o edges eiq , eis' Further if
G + == 0 on two edges eiq and e is with L (e iq' eiJ ~ n then they are adjacent,
i.e., there is no intermediate edge eir'

Proof For any triple of edges, eiq , ein Cis ordered counter clockwise we
may consi~er the restriction FI(e,que,,~e,,) and form the second divided
difference diq and the basis function B iq defined in the same way as in
Section 2. Because of convexity it is true that

diq = <G + ' Biq >> 0

which implies that G + > 0 on at least one of the edges.
Next suppose that G + == 0 on two edges eiq , eis with L(e iq , e i ,) ~ nand

eir is an intermediate edge. Then, considering the restriction of F to
eiq U eir U ei,n we have

with these coefficients defined as in Eqs. (2.4) and (2.5). It follows that

djq = <G+' iijq>~ 0

which is a contradiction. I

Remark 3.2. The assumption that the domain D = Uijk E I, is convex is
not necessary for the validity of the results in this section. It suffices to
assume that there exists a strictly convex function t/J E C X (R 2

) (cf. Lemma
3.1) interpolating the points (x j, Yj. Zi) and that the triangulation of D is a
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subset of the triangulation generated by the largest convex minorant I of
the data values.

We end our paper by considering a few examples. The first is the example
from Section 2, where now convexity is imposed as a shape constraint.
Then the equations (3.1) become

The solution is

k=7,1=1, ... ,6; k = I, ... ,6; 1= 1.

and

0: 71 = 0:74 = 30( j3 + 4 )/13 = 0: 72/2 = 0: 73/2

0:;1 =30(7+5 j3)/13, i=I, ...,6

112( I) =123(1) =134(1) = 14s( 1) = !'6( I l =161 (t)

=-15(j3+4ll(l-ll/13, O~t~1

and for j= I, ... , 6,

5(6 j3 + 11)(j3-I - t)3/13 - 30(j3 + 4)( 1 - 1)/13,

O~t~j3-1,

-30(j3 +4)(I-tl/13,

j3-1~1~1.

TABLE 3.1

Data Triangulation

V, V. VI V~

Xi .h -, V. V~ VJ

I -2 0 0 V. V3 V4

2 -1.6 0.2 -2 V6 V4 V~

3 0 0.4 -3 V. VI V~

4 1.6 0 -2.5 V7 V2 VJ

5 2 0 0 V7 V, V4

6 -0.5 2.3 -1.7 V, V4 Vs
7 0.5 -2 -1.9 V7 V4 V6
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5

FIG. 3.1. Reconstructions based on Table 3.1. Left. unconstrained case. Right. constrained
case.

In general, of course, the equations (3.1) cannot be solved explicitly. We
propose to use Newton's method for its solution, similar as in the
univariate case, [3]. It can be shown that Newton iteration becomes

k= 1, 2, ... , n, 1= 1,2, ... , m k - 2 • Here

if cp(t) ~ 0,

else.

Remark 3.3. As in the univariate case [3] one may verify that the
Jacobian occurring in Newton's method (3.2) is positive definite in a suf­
ficiently small neighbourhood around oc*, the unique solution of the

TABLE 3.2

Data

I 2 3 4 5 6 7 8 9 10 II 12 13
Xi 0.21 0.46 0.83 0.97 0.67 0.53 0.28 0.07 0.06 0.25 0.49 0.67 0.77

Yi 0.88 0.93 0.89 0.54 0.71 0.74 0.77 0.70 0.43 0.56 0.61 0.54 0.45

14 15 16 17 18 19 20 21 22 23 24 25
Xi 0.90 0.66 0.50 0.32 0.25 0.46 0.57 0.75 0.94 0.46 0.18 0.14

Yi 0.31 0.35 0.47 0.44 0.31 033 0.20 0.25 0.05 0.07 0.19 0.06
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FIG. 3.2. Reconstruction based on Table 3.2.
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equations (3.1 ). The (kJ, is )th element of the Jacobian (evaluated at ex = XiII)

is

t (~X;:IBi",( t)) 0+ Bi.,.(t) Bkl(t) dt.

The second example is given in Table 3.1 and the resulting unconstrained
and constrained curve networks are displayed in Fig. 3.1. In the final
example we consider the convex function

sampled at 25 points as given in Table 3.2. The reconstruction is given in
Fig. 3.2. Here we display only the constrained case since there were no
visible differences between the unconstrained and the constrained case
(although along some edges the constraint was active). This effect was
quite typical in examples with many interpolation points.

In Newton's method we used the unconstrained solution as the starting
value for the iterations. In the example from Fig. 3.1 (7 points) the 6th and
7th iterations are identical in double precision arithmetic. For the example
from Fig. 3.2 (25 points) the 3rd and 4th iterations are identical.
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